Bài 1 :
Cho \(D=\frac{x+2y-3z}{x-2y+3z}\)
Tính D biết x,y,z tỉ lệ với 5 : 4 : 3
cho P = \(\frac{x+2y-3z}{x-2y+3z}\)
tính giá trị của P biết x,y,z tỉ lệ với 5:4:3
Đặt \(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}=k\Rightarrow x=5k;y=4k;z=3k\)
=>\(P=\frac{x+2y-3z}{x-2y+3z}=\frac{5k+2.4k-3.3k}{5k-2.4k+3.3k}=\frac{5k+8k-9k}{5k-8k+9k}=\frac{4k}{6k}=\frac{2}{3}\)
x; y; z tỉ lệ với 5; 4; 3
\(\Rightarrow\frac{x}{5}=\frac{y}{4}=\frac{z}{3}\)
\(\Rightarrow\frac{x}{5}=\frac{2y}{8}=\frac{3z}{9}\)
\(\Rightarrow\frac{x+2y-3z}{5+8-9}=\frac{x-2y+3z}{5-8+9}=\frac{x}{5}=\frac{y}{4}=\frac{z}{3}\)
\(\Rightarrow\frac{x+2y-3z}{4}=\frac{x-2y+3z}{6}\)
\(\Rightarrow\frac{x+2y-3z}{x-2y+3z}=\frac{4}{6}=\frac{2}{3}\)
Cho \(y=\frac{x+2y-3z}{x-2y+3z}\)
Tính giá trị của y biết các số x; y; z tỉ lệ với 5; 4; 3
Ta có x,y,z tỉ lệ với 5,4,3
=> \(\frac{x}{5}\)=\(\frac{y}{4}\)=\(\frac{z}{3}\)
=> x=5.k , y=4.k , z=3.k
=> y =\(\frac{x+2y-3z}{x-2y+3z}\)= \(\frac{5k+2.\left(4k\right)-3.\left(3k\right)}{5k-2.\left(4k\right)+3.\left(3k\right)}\)= \(\frac{5k+8k-9k}{5k-8k+9k}\)= \(\frac{4k}{6k}\)= \(\frac{2}{3}\)
vậy y = \(\frac{2}{3}\)
Cho P = x + 2y - 3z / x - 2y + 3z. Tính giá trị của biểu thức P biết x, y, z tỉ lệ với 5 ; 4 và 3
Cho P = x + 2y - 3z/x - 2y + 3z. Tính giá trị của P biết các số x, y, z tỉ lệ với các số 5; 4; 3
Ta có \(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}\)
Đặt \(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}=k\Rightarrow\hept{\begin{cases}x=5k\\y=4k\\z=3k\end{cases}}\)
Khi đó P = \(\frac{x+2y-3z}{x-2y+3z}=\frac{5k+2.4k-3.3k}{5k-2.4k+3.3k}=\frac{5k+8k-9k}{5k-8k+9k}=\frac{4k}{6k}=\frac{2}{3}\)
Theo bài ra, ta có :
x:y:z=5:4:3 ⇒x/5=y/4=z/5⇒
Đặt x/5=y/4=z/3=kx5=y4=z3=k ⇒x=5k
y=4k
z=3k⇒x=5ky=4kz=3k
⇒P=x+2y−3z/x−2y+3z=5k+8k−9k/5k−8k+9k=4k/6k=23
Vậy P=23
Cho A=\(\dfrac{x+2y-3z}{x-2y+3z}\) tính A biết x,y,z tỉ lệ với 5;4;3
\(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{3}=\dfrac{2y}{8}=\dfrac{3z}{9}=\dfrac{x+2y-3z}{5+8-9}=\dfrac{x-2y+3z}{5-8+9}\\ \Rightarrow A=\dfrac{x+2y-3z}{x-2y+3z}=\dfrac{4}{6}=\dfrac{2}{3}\)
CHO \(P=\frac{X+2Y-3Z}{X-2Y+3Z}\). TÍNH P BIẾT X;Y;Z TỈ LỆ VỚI 5;4;3.
Mình chỉ nói cách tính thôi nha, còn lại bạn tự tính. Có x; y; z tỉ lệ với 5; 4; 3 => \(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}\) rồi áp dụng tính chất của tỉ lệ thức để suy ra x = ?y và z = ?y. Ra được rồi thì thay y vào P -> rút gọn
Cho P=\(\frac{x+2y-3z}{x-2y+3z}\)
Tính giá trị của P biết x,y,z tỉ lệ với 5,4,3
Có: x,y,z tỉ lệ với 5;4;3
\(\Rightarrow\frac{x}{5}=\frac{y}{4}=\frac{z}{3}\)
Đặt \(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}=k\)
\(\Rightarrow x=5k;y=4k;z=3k\)
\(P=\frac{x+2y-3z}{x-2y+3z}\)
\(\Rightarrow P=\frac{5k+2.4k-3.3k}{5k-2.4k+3.3k}\)
\(\Leftrightarrow P=\frac{4k}{6k}\)
\(\Leftrightarrow P=\frac{2}{3}\)
Vậy \(P=\frac{2}{3}\)
Cho P= (x+2y-3z)/(x-2y+3z). TÍnh P biết x;y;z tỉ lệ với 5;4;3
Lời giải:
Vì $x,y,z$ tỉ lệ với $5,4,3$ nên:
$\frac{x}{5}=\frac{y}{4}=\frac{z}{3}$
Đặt $\frac{x}{5}=\frac{y}{4}=\frac{z}{3}=k\Rightarrow x=5k; y=4k; z=3k$.
Khi đó:
$P=\frac{x+2y-3z}{x-2y+3z}=\frac{5k+2.4k-3.3k}{5k-2.4k+3.3k}$
$=\frac{5k+8k-9k}{5k-8k+9k}=\frac{4k}{6k}=\frac{2}{3}$