Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ha Nguyen
Xem chi tiết
Ịman
Xem chi tiết
Khiêm Nguyễn Gia
Xem chi tiết
Nguyễn Ngọc Anh Minh
15 tháng 8 2023 lúc 8:55

\(\Leftrightarrow x^2+2xy+y^2-xy-x^2y^2=0\)

\(\Leftrightarrow\left(x+y\right)^2=xy\left(xy+1\right)\)

VT là 1 số chính phương mà vế phải là tích 2 số tự nhiên liên tiếp

\(\Rightarrow\left[{}\begin{matrix}xy=0\\xy+1=0\end{matrix}\right.\)

+ Với \(xy=0\Rightarrow\left(x+y\right)^2=x^2+y^2=0\Rightarrow x=y=0\)

+ Với \(xy+1=0\Rightarrow xy=-1\Rightarrow\left[{}\begin{matrix}x=1;y=-1\\x=-1;y=1\end{matrix}\right.\)

võ dương thu hà
Xem chi tiết
Minh Châu
Xem chi tiết
nguyễn như quỳnh
Xem chi tiết
Phạm Hồng Hạnh
24 tháng 10 2015 lúc 20:01

Phương trình đã cho tương đương với: 2x+ 2y2 - 2xy-2x-2y=0 (=) (x-y)2+(x-1)2+(y-1)2=2 (1)

Không mất tính tổng quát giả sử x>= y. Do x;y nguyên nên x-y=0 hoặc x-y=1

*) Xét x-y=0 =) (1) (=) 2(x-1)2=2 (=) x=y=2 (t/m)

*) Xét x-y=1 (=) x-1=y =) (1) (=) 1+y2+(y2-2y+1)=2 (=) 2y2-2y=0 (=) y=0;x=1 hoặc y=1;x=2

Vậy các cặp nghiệm (x;y) của phương trình là (2;2);(0;1);(1;0);(1;2);(2;1)

phan thị minh anh
Xem chi tiết
Achana
Xem chi tiết
Hà Việt
Xem chi tiết
Mai Hoàng Tuấn _2008
Xem chi tiết
Darlingg🥝
30 tháng 12 2019 lúc 21:01

\(x^2+xy+y^2=2x+y\)

đk có nghiệm của Pt:

\(x^2+x\left(y-2\right)+y^2-y=0\left(1\right)\)

để tồn tại x thì Pt 1 phải có nghiệm

\(\left(y-2\right)^2-4\left(y^2-y\right)\)

\(-3y^2+4\left(vl\right)\)

Vậy Pt kia k có nghiệm nguyên.

Khách vãng lai đã xóa
Happy Summer
21 tháng 2 2020 lúc 23:05

đúng là thanh niên trong đội tuyển toán yêu dấu của cô chủ nhiệm

Khách vãng lai đã xóa