Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
BÙI BẢO KHÁNH
Xem chi tiết
Gia Hân
10 tháng 8 2023 lúc 15:20

1. 53 = 5.5.5 = 125

2. 27 = 2.2.2.2.2.2.2 = 128

3. 44 = 4.4.4.4 = 256

4. 73 = 7.7.7 = 343

6. 35 = 243

7. 26 =  64

8. 34 =  81

9. 83 =  512

11. 132 = 169

12. 112 = 121

13. 142 = 196

14. 152 = 225

16. 172 = 289

17. 182 = 324

18. 192 = 361

19. 202 = 400

21. 104 = 10000

22. 105 = 100000

23. 106 = 1000000

24. 107 = 10000000

Ngọc
10 tháng 8 2023 lúc 15:25

bạn làm như bạn gia hân là đúng nhé

BÙI BẢO KHÁNH
10 tháng 8 2023 lúc 16:19

giải giúp mình bài 2 trên với ạ

hello hello
Xem chi tiết
Phan Thùy Dương
22 tháng 12 2017 lúc 20:49

a,\(5^3.2-100:4+2^3.5\)

= 125 . 2 - 25 + 8 . 5

= 250 - 25 + 40

= 265

b, \(6^2:9+50.2-3^3.3\)

= 36 : 9 + 100 - 27 . 3

= 4 + 100 - 81

= 23

Dinh Quang Vinh
8 tháng 10 2019 lúc 19:42

bạn kia ko làm các ý khác à

Đào Chí Thành
21 tháng 10 2019 lúc 21:53

b) \(5^3\cdot2-100:4+2^3\cdot5\)

\(=125\cdot2-25+8\cdot5\)

\(=250-25+40\)

\(=225+40=265\)

c) \(6^2:9+50\cdot2+3^3-3\)

\(=36:9+100+27-3\)

\(=4+100+27-3\)

\(=104+27-3=131-3=128\)

d) \(3^2\cdot5+2^3\cdot10-81:3\)

\(=9\cdot5+8\cdot10-27\)

\(=45+80-27\)

\(=125-27=98\)

e) \(5^{13}:5^{10}-25\cdot2^2\)

\(=5^{13-10}-5^2\cdot2^2\)

\(=5^3-\left(5\cdot2\right)^2\)

\(=125-10^2\)

\(=125-100=25\)

f) \(20:2^2+5^9:5^8\)

\(=20:4+5^{9-8}\)

\(=5+5^1=5+5=10\)

g) \(100:5^2+7\cdot3^2\)

\(=10^2:5^2+7\cdot9\)

\(=\left(10:5\right)^2+63\)

\(=2^2+63=4+63=67\)

h) \(84:4+3^9:3^7+5^0\)

\(=21+3^{9-7}+1\)

\(=21+3^2+1\)

\(=21+9+1=30+1=31\)

i) \(29-\left[16+3\cdot\left(51-49\right)\right]\)

\(=29-\left[16+3\cdot2\right]\)

\(=29-\left[16+6\right]\)

\(=29-22=7\)

j) \(\left(15^{19}:5^{17}+3\right)\cdot0:7\)

\(=\left[\left(3\cdot5\right)^{19}:5^{17}+3\right]\cdot0\)

Vì số nào nhân cho 0 cũng bằng 0 nên giá trị biểu thức trên bằng 0

k) \(7^9:7^7-3^2+2^3\cdot5\)

\(=7^{9-7}-9+8\cdot5\)

\(=7^2-9+40\)

\(=49-9+40=40+40=80\)

l) \(1200:2+6^2\cdot2^1+18\)

\(=600+36\cdot2+18\)

\(=600+72+18\)

\(=600+\left(72+18\right)=600+90=690\)

m) \(5^9:5^7+70:14-20\)

\(=5^{9-7}+5-20\)

\(=5^2+5-20\)

\(25+5-20=30-20=10\)

Những câu sau mình làm sau nhé bạn!!!!!!!

Khách vãng lai đã xóa
Linh Linh Channel
Xem chi tiết
Đoàn Đức Hà
21 tháng 5 2021 lúc 20:47

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}\)

\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)

\(=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{10-9}{9.10}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)

\(=1-\frac{1}{10}< 1\)

Khách vãng lai đã xóa
Hà Nhật Minh
21 tháng 5 2021 lúc 21:15

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}\\ A< \frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{9\times10}\\ A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}=1-\frac{1}{10}\\ A< \frac{9}{10}< 1\Rightarrow A< 1\)

Khách vãng lai đã xóa
phungco
Xem chi tiết
nguyenlengan
Xem chi tiết
Lê Hoài Duyên
9 tháng 9 2017 lúc 23:49

*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)

              \(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)

              \(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)

              \(=6\times\left(2^2+2^3+...+2^{2008}\right)\)

              \(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)

               \(\Rightarrow A⋮3\)

*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)

               \(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)

               \(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)

               \(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)

                \(\Rightarrow A⋮7\)

Mình sửa lại đề C 1 chút xíu

*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)

               \(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)

               \(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)

                \(\Rightarrow C⋮4\)

Các câu khác làm tương tự nhé. Chúc bạn học tốt!

Nguyễn Hải Nam
10 tháng 12 2017 lúc 21:36

Thanks bạn

Đặng Thị Khánh Ly
13 tháng 2 2020 lúc 23:03

Giải: 

A= 2 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4 +....+ 2 mũ 2010

A= (2 + 2 mũ 2) + (2 mũ 3 + 2 mũ 4) +....+ (2 mũ 2009 + 2 mũ 2010)

A= 2(1 + 3) + 2 mũ 3 (1 + 2) + 2 mũ 2009 (1 +2_

A= 2.3 + 2 mũ 3.3 +....+ 2 mũ 2009.3

A= 3.(2 + 2 mũ 3 +....+ 2 mũ 2009) chia hết cho 3

A= (2 + 2 mũ 2 + 2 mũ 3) + (2 mũ 4 + 2 mũ 5 + 2 mũ 6) +....+ (2 mũ 2008 + 2 mũ 2009 + 2 mũ 2010)

A= 2(1 + 2 + 2 mũ 2) + 2 mũ 4(1+ 2 + 2 mũ 2) +...+ 2 mũ 2008.(1 + 2 + 2 mũ 2)

A= 2.7 + 2 mũ 4. 7 +.... + 2 mũ 2008.7

A= 7.(2 + 2 mũ 4 +....+ 2 mũ 22010 chia hết cho 7.

Các câu còn lại làm tương tự như câu a nha bạn!

Khách vãng lai đã xóa
Lê Minh Hiền
Xem chi tiết
Đoàn Đức Hà
16 tháng 12 2020 lúc 11:43

a) \(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)

\(A=3\left(2+2^3+...+2^{2009}\right)⋮3\)

\(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)

\(A=7\left(2^1+2^4+...+2^{2008}\right)⋮7\)

Các ý dưới bạn làm tương tự nhé. 

Khách vãng lai đã xóa
mon monee
Xem chi tiết
phungco
Xem chi tiết
non vãi
18 tháng 2 lúc 9:56

ko bt

Nguyễn Ngọc Toàn
18 tháng 2 lúc 13:07

Đc r

nguyễn ngọc lan
Xem chi tiết
ngo huyen dieu
15 tháng 12 2017 lúc 18:18

bạn giải được chưa thì giúp mình với

Phong Linh
10 tháng 6 2018 lúc 13:46

P=3+2^2(2+1)+2^4(2+1)+2^6(2+1)

=3(1+2^2+2^4+2^6)

=>đpcm

phạm thị duyên
6 tháng 12 2020 lúc 11:29

dấu ^ là gì

Khách vãng lai đã xóa
Vũ Tiến MAnh
Xem chi tiết
Đoàn Đức Hà
23 tháng 10 2021 lúc 18:52

\(2+2^2+2^3+...+2^{11}+2^{12}\)

\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+\left(2^7+2^8+2^9\right)+\left(2^{10}+2^{11}+2^{12}\right)\)

\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+2^7\left(1+2+2^2\right)+2^{10}\left(1+2+2^2\right)\)

\(=7\left(2+2^4+2^7+2^{10}\right)\)chia hết cho \(7\).

Khách vãng lai đã xóa
Vũ Tiến MAnh
24 tháng 10 2021 lúc 8:23

bạn có thể giảng cho mình được ko,chép thì chưa hiểu bài

Khách vãng lai đã xóa