Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Anh Quân
Xem chi tiết
Nguyễn Anh Quân
Xem chi tiết
Đỗ Đức Đạt
17 tháng 11 2017 lúc 20:17

1...Chia cả hai vế cho xyz ta được 
3xy/xyz + 3yz/xyz + 3zx/xyz = 4xyz/xyz 
<=>3/x + 3/y + 3/z = 4 
<=>1/x + 1/y + 1/z = 4/3 
Vì x,y,z bình đẳng nên giả sử 0<x<=y<=z 
+nếu x>=4=> y>=4;z>=4 
=> 1/x + 1/y + 1/z <= 1/4 + 1/4 + 1/4 =3/4 < 4/3 => pt vô nghiệm 
+nếu x=1 => 1+1/y+1/z=4/3 
<=> 1/y+1/z=1/3 
<=> 3(y+z)=yz 
<=> 3y+3z-yz=0 
<=> 3y-yz+3z-9=-9 
<=> y(3-z)-3(3-z)=-9 
<=> (3-z)(3-y)=9 
Vì y,z nguyên dương nên (3-y),(3-z) nguyên dương 
mà 9=3*3=1*9=9*1 
==>3-z=3 và 3-y=3 => z=0 và y=0 (loại vì y,z nguyên dương) 
+nếu x=2 => 1/2+1/y+1/z=4/3 
<=> 1/y+1/z=5/6 
<=> 6(y+z)=5yz 
<=> 6y+6z-5yz=0 
<=> 30y-25yz+30z-36=-36 
<=> 5y(6-5z)-6(6-5z)=-36 
<=> (5z-6)(5y-6)=36 
Vì y,z nguyên dương nên (5y-6),(5z-6) nguyên dương 
mà 36=6*6=2*18=18*2=3*12=12*3=4*9=9*4 
Giải tương tự phần trên ta được 
y=2,z=3 hoặc y=3,z=2 
+nếu x=3 => 1/3+1/y+1/z=4/3 
<=> 1/y+1/z=1 
Giải tương tự phần trên ta được y=z=2 
Vậy (x;y;z)=(2;2;3);(2;3;2);(3;2;2)

Đây là bài gần giống nhé

Nguyễn Anh Quân
Xem chi tiết
Huyền Anh
17 tháng 11 2017 lúc 20:26

sory bn 

mk ms hok lp 6

chúc các bn hok tốt !

Nguyễn Anh Quân
Xem chi tiết
Nguyễn Anh Quân
Xem chi tiết
Huyền Anh
17 tháng 11 2017 lúc 21:12

mk ms hok lp 6 thoy nên ko biết làm 

tk mk nha

chúc các bn hok tốt !

lyli
17 tháng 11 2017 lúc 21:15

điêu thế làm sao 3 dc

Nhok_baobinh
17 tháng 11 2017 lúc 21:38

\(x^3-\left(y^3+z^3\right)=3xyz\)

\(\Rightarrow x^3-\left[\left(y+z\right)^3-3yz\left(y+z\right)\right]=3xyz\)

\(\Rightarrow x^3-\left(y+z\right)^3+3yz\left(y+z\right)=3xyz\)

\(\Rightarrow x^3-\left(y+z\right)^3=3yz\left[x-\left(y+z\right)\right]\)

\(\Rightarrow\left[x-\left(y+z\right)\right]\left[x^2+x\left(y+z\right)+\left(y+z\right)^2-3yz\right]=0\)

\(\Rightarrow\left[x-\left(y+z\right)\right]\left[x^2+x\left(x+y\right)+y^2+z^2-yz\right]=0\)

Mà \(x^2+x\left(x+y\right)+y^2+z^2-yz>0\)

\(\Rightarrow x=y+z\)

\(\Rightarrow\left(y+z\right)^2=2\left(y+z\right)\)

\(\Rightarrow\left(y+z\right)^2-2\left(y+z\right)=0\)

\(\Rightarrow\left(y+z\right)\left(y+z-2\right)=0\)

\(\Rightarrow\hept{\begin{cases}y=z=1\\x=2\end{cases}}\)

Cần Một Người Quan Tâm
Xem chi tiết
Ngô Quang Huy
Xem chi tiết
Nguyễn Anh Quân
Xem chi tiết
pham trung thanh
9 tháng 11 2017 lúc 20:29

b) Do \(13x^2\ge0\)nên \(24y^2\le2015\)

\(\Rightarrow y^2\le83\)

Đến đây xét các trường hợp của y là được

pham trung thanh
9 tháng 11 2017 lúc 20:11

a)  http://olm.vn/hoi-dap/question/1058362.html

Nguyễn Anh Quân
Xem chi tiết
lewandoski
10 tháng 11 2017 lúc 10:05

a) Ta có: \(y^2=1+x+x^2+x^3+x^4\)

\(\Leftrightarrow4y^2=4+4x+4x^2+4x^3+4x^4\)

\(\Rightarrow4x^4+4x^3+x^2< 4y^2\le4x^4+x^2+4+4x^3+8x^2+4x\)

\(\Rightarrow\left(2x^2+x\right)^2< 4y^2\le\left(2x^2+x+2\right)^2\)

\(\Rightarrow\orbr{\begin{cases}4y^2=\left(2x^2+x+1\right)^2\\4y^2=\left(2x^2+x+2\right)^2\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}4x^4+4x^3+4x^2+4x+4=\left(2x^2+x+1\right)^2\\4x^4+4x^3+4x^2+4x+4=\left(2x^2+x+2\right)^2\end{cases}}\)

đến đây xét từng trường hợp là ra