Tìm a,b biết : ƯCLN(a,b)+BCNN(a,b)=15 và a<b.
Lai giúp mình K cho nhưng phải đúng
Tìm các số tự nhiên a và b (a<b), biết:
a) ƯCLN ( a, b ) = 15 và BCNN ( a, b ) = 180
b) ƯCLN ( a, b ) = 11 và BCNN ( a, b ) = 484
Trước tiên, ta cần chứng minh 2 bổ đề sau:
Bổ đề 1: Cho 2 số tự nhiên \(a,b\) khác 0. Khi đó \(ƯCLN\left(a,b\right).BCNN\left(a,b\right)=a.b\).
Bổ đề 2: Cho 2 số tự nhiên \(a,b\) khác 0. Khi đó:\(ƯCLN\left(a,b\right)+BCNN\left(a,b\right)\ge a+b\)
Chứng minh:
Bổ đề 1: Đặt \(\left(a,b\right)=1\) (từ nay ta sẽ kí hiệu \(\left(a,b\right)=ƯCLN\left(a,b\right)\) và \(\left[a;b\right]=BCNN\left(a,b\right)\) cho gọn) \(\Rightarrow\left\{{}\begin{matrix}a=dk\\b=dl\end{matrix}\right.\left(\left(k,l\right)=1\right)\)
Nên \(\left[a,b\right]=dkl\) \(\Rightarrow\left(a;b\right)\left[a;b\right]=dk.dl=ab\). Ta có đpcm.
Bổ đề 2: Vẫn giữ nguyên kí hiệu như ở chứng minh bổ đề 1. Ta có \(k\ge1,l\ge1\) nên \(\left(k-1\right)\left(l-1\right)\ge0\)
\(\Leftrightarrow kl-k-l+1\ge0\)
\(\Leftrightarrow kl+1\ge k+l\)
\(\Leftrightarrow dkl+d\ge dk+dl\)
\(\Leftrightarrow\left[a,b\right]+\left(a,b\right)\ge a+b\) (đpcm)
Vậy 2 bổ đề đã được chứng minh.
a) Áp dụng bổ đề 1, ta có \(ab=\left(a,b\right)\left[a,b\right]=15.180=2700\) và \(a+b\le\left(a,b\right)+\left[a,b\right]=195\). Do \(b\ge a\) \(\Rightarrow a^2\le2700\Leftrightarrow a\le51\)
Mà \(15|a\) nên ta đi tìm các bội của 15 mà nhỏ hơn 51:
\(a\in\left\{15;30;45\right\}\)
Khi đó nếu \(a=15\) thì \(b=180\) (thỏa)
Nếu \(a=30\) thì \(b=90\) (loại)
Nếu \(a=45\) thì \(b=60\) (thỏa)
Vậy có 2 cặp số a,b thỏa mãn ycbt là \(15,180\) và \(45,60\)
Câu b làm tương tự.
Tìm số tự nhiên a và b biết rằng :
a) ƯCLN(a;b) = 15 và BCNN(a;b) gấp ƯCLN(a;b) 2100 lần
b) a . b = 180 và BCNN(a;b) gấp 20 lần ƯCLN(a;b)
Tìm các số nhiên a và b (a < b) biết :
a) ƯCLN (a,b) = 15 và BCNN(a,b) = 180
b) ƯCLN(a,b) = 11 và BCNN (a,b) 484
a) Ta có: ab = ƯCLN(a, b). BCNN(a, b) = 15. 180 = 2 700.
Vì ƯCLN(a, b) = 15 nên a ⁝ 15, b ⁝ 15, ta giả sử a = 15m, b = 15 n. Do a < b nên m < n; m, n ∈ N* và ƯCLN(m, n) = 1.
Ta có: ab = 2 700
15m. 15n = 2 700
m. n. 225 = 2 700
m. n = 2 700: 225
m. n = 12 = 1. 12 = 2. 6 = 3. 4
Vì m và n là hai số nguyên tố cùng nhau, m < n và có tích là 12 nên ta có:
(m; n) ∈{(1; 12); (3; 4)}
+) Với (m; n) = (1; 12) thì a = 1. 15 = 15; b = 12. 15 = 180.
+) Với (m; n) = (3; 4) thì a = 3. 15 = 45; b = 4. 15 = 60.
Vậy các cặp (a; b) thỏa mãn là (15; 180); (45; 60).
Nguồn : https://vietjack.com/sbt-toan-6-ket-noi/bai-2-51-trang-43-sbt-toan-lop-6-tap-1-ket-noi.jsp
b) Ta có: ab = ƯCLN(a, b). BCNN(a, b) = 11. 484 = 5 324.
Vì ƯCLN(a, b) = 11 nên , ta giả sử a = 11m, b = 11n. Do a < b nên m < n; m, n ∈ N* và ƯCLN(m, n) = 1.
Ta có: ab = 5 324
11m. 11n = 5 324
m. n. 121 = 5 324
m. n = 5 324: 121
m. n = 44 = 1. 44 = 4. 11
Vì m và n là hai số nguyên tố cùng nhau, m < n và có tích là 44 nên ta có:
(m; n) ∈{(1; 44); (4; 11)}
+) Với (m; n) = (1; 44) thì a = 1. 11 = 11; b = 44. 11 = 484.
+) Với (m; n) = (4; 11) thì a = 4. 11 = 44; b = 11. 11 = 121.
Vậy các cặp (a; b) thỏa mãn là (11; 484); (44; 121).
1.Tìm a và b biết ƯCLN (a,b) = 15 và BCNN (a,b) = 2100.ƯCLN (a,b)
Giả sử \(a\ge b\).
\(\left(a,b\right)=15\Rightarrow a=15m,b=15n\)với \(\left(m,n\right)=1;m\ge n\).
\(ab=\left[a,b\right].\left(a,b\right)=2100.15=31500\)
\(ab=15m.15n=225mn=31500\Rightarrow mn=140=2^2.5.7\).
mà \(\left(m,n\right)=1;m\ge n\)nên ta có bảng giá trị:
m | 20 | 28 | 35 | 140 |
n | 7 | 5 | 4 | 1 |
a | 300 | 420 | 525 | 2100 |
b | 105 | 75 | 60 | 15 |
Tìm 2 số a,b biết ƯCLN(a,b)=15 và BCNN(a,b)=300 và a+15=b
Tìm 2 số a,b biết ƯCLN(a,b)=15 và BCNN(a,b)=300 và a+15=b
Theo bài ra ta có: a = 15.k; b = 15.d (k;d) = 1
⇒ a.b = 15.k.15.d ⇒a.b = 300.15
⇒ 15.k.15.d = 300.15 ⇒ k.d = 300.15:15:15 ⇒ k.d = 20
Mặt khác ta cũng có: 15.k + 15 = 15.d
15.(k + 1) = 15d
k + 1 = d ⇒ k = d - 1
Thay k = d - 1 vào k.d = 20 ta có: (d-1).d = 20 ⇒ (d-1).d = 4.5 ⇒ d = 5
k = 5 - 1 = 4
Vậy a = 15.4 = 60; b = 60 + 15 = 75
Kết luận vậy (a;b) =(60; 75)
tìm các số tự nhiên a và b ( a < b ) , biết :
a, ƯCLN( a, b) = 15 và BCNN (a,b) = 180
b, ƯCLN(a,b) = 11 và BCNN( a,b ) =484
) Ta có: ab = ƯCLN(a, b). BCNN(a, b) = 15. 180 = 2 700.
Vì ƯCLN(a, b) = 15 nên a ⁝ 15, b ⁝ 15, ta giả sử a = 15m, b = 15 n. Do a < b nên m < n; m, n ∈ N* và ƯCLN(m, n) = 1.
Ta có: ab = 2 700
15m. 15n = 2 700
m. n. 225 = 2 700
m. n = 2 700: 225
m. n = 12 = 1. 12 = 2. 6 = 3. 4
Vì m và n là hai số nguyên tố cùng nhau, m < n và có tích là 12 nên ta có:
(m; n) ∈{(1; 12); (3; 4)}
+) Với (m; n) = (1; 12) thì a = 1. 15 = 15; b = 12. 15 = 180.
+) Với (m; n) = (3; 4) thì a = 3. 15 = 45; b = 4. 15 = 60.
a) Ta có: ab = ƯCLN(a, b). BCNN(a, b) = 15. 180 = 2 700.
Vì ƯCLN(a, b) = 15 nên a ⁝ 15, b ⁝ 15, ta giả sử a = 15m, b = 15 n. Do a < b nên m < n; m, n ∈ N* và ƯCLN(m, n) = 1.
Ta có: ab = 2 700
15m. 15n = 2 700
m. n. 225 = 2 700
m. n = 2 700: 225
m. n = 12 = 1. 12 = 2. 6 = 3. 4
Vì m và n là hai số nguyên tố cùng nhau, m < n và có tích là 12 nên ta có:
(m; n) ∈{(1; 12); (3; 4)}
+) Với (m; n) = (1; 12) thì a = 1. 15 = 15; b = 12. 15 = 180.
+) Với (m; n) = (3; 4) thì a = 3. 15 = 45; b = 4. 15 = 60.
Vậy các cặp (a; b) thỏa mãn là (15; 180); (45; 60).
b) Ta có: ab = ƯCLN(a, b). BCNN(a, b) = 11. 484 = 5 324.
Vì ƯCLN(a, b) = 11 nên , ta giả sử a = 11m, b = 11n. Do a < b nên m < n; m, n ∈ N* và ƯCLN(m, n) = 1.
Ta có: ab = 5 324
11m. 11n = 5 324
m. n. 121 = 5 324
m. n = 5 324: 121
m. n = 44 = 1. 44 = 4. 11
Vì m và n là hai số nguyên tố cùng nhau, m < n và có tích là 44 nên ta có:
(m; n) ∈{(1; 44); (4; 11)}
+) Với (m; n) = (1; 44) thì a = 1. 11 = 11; b = 44. 11 = 484.
+) Với (m; n) = (4; 11) thì a = 4. 11 = 44; b = 11. 11 = 121.
Vậy các cặp (a; b) thỏa mãn là (11; 484); (44; 121).
a) Ta có: ab = ƯCLN(a, b). BCNN(a, b) = 15. 180 = 2 700.
Vì ƯCLN(a, b) = 15 nên a ⁝ 15, b ⁝ 15, ta giả sử a = 15m, b = 15 n. Do a < b nên m < n; m, n ∈ N* và ƯCLN(m, n) = 1.
Ta có: ab = 2 700
15m. 15n = 2 700
m. n. 225 = 2 700
m. n = 2 700: 225
m. n = 12 = 1. 12 = 2. 6 = 3. 4
Vì m và n là hai số nguyên tố cùng nhau, m < n và có tích là 12 nên ta có:
(m; n) ∈{(1; 12); (3; 4)}
+) Với (m; n) = (1; 12) thì a = 1. 15 = 15; b = 12. 15 = 180.
+) Với (m; n) = (3; 4) thì a = 3. 15 = 45; b = 4. 15 = 60.
Vậy các cặp (a; b) thỏa mãn là (15; 180); (45; 60).
b) Ta có: ab = ƯCLN(a, b). BCNN(a, b) = 11. 484 = 5 324.
Vì ƯCLN(a, b) = 11 nên , ta giả sử a = 11m, b = 11n. Do a < b nên m < n; m, n ∈ N* và ƯCLN(m, n) = 1.
Ta có: ab = 5 324
11m. 11n = 5 324
m. n. 121 = 5 324
m. n = 5 324: 121
m. n = 44 = 1. 44 = 4. 11
Vì m và n là hai số nguyên tố cùng nhau, m < n và có tích là 44 nên ta có:
(m; n) ∈{(1; 44); (4; 11)}
+) Với (m; n) = (1; 44) thì a = 1. 11 = 11; b = 44. 11 = 484.
+) Với (m; n) = (4; 11) thì a = 4. 11 = 44; b = 11. 11 = 121.
Vậy các cặp (a; b) thỏa mãn là (11; 484); (44; 121).
1) Tìm BCNN(a,b) biết a.b = 3375 và ƯCLN(a,b) = 15
2) Tìm a,b biết rằng: a.b = 252 và ƯCLN(a,b) = 2
Tìm a,b biết ƯCLN(a,b) = 15 , BCNN(a,b) = 90 và a+15 = b
giúp mik với ạ
ai nhanh mik k cho
Ta có : \(\hept{\begin{cases}ƯCLN\left(a,b\right)=15\\BCNN\left(a,b\right)=90\end{cases}}\)
\(\Rightarrow\)ab=ƯCLN(a,b).BCNN(a,b)=15.90=1350
Vì ƯCLN(a,b)=15 nên \(\hept{\begin{cases}a⋮15\\b⋮15\end{cases}}\)
\(\Rightarrow\)\(\hept{\begin{cases}a=15m\\b=15n\\ƯCLN\left(m,n\right)=1\end{cases}}\)
Ta có : a+15=b
\(\Rightarrow\)b-a=15 (a<b)
Mà ab=1350
\(\Rightarrow\)15m.15n=1350
\(\Rightarrow\)225m.n=1350
\(\Rightarrow\)mn=6
Vì a<b ; b-a=15 và ƯCLN(m,n)=1 nên ta có bảng sau :
m 2
n 3
a 30
b 45
Vậy a=30 và b=45.
\(ab=ƯCLN(a,b).BCNN(a,b)=15.90=1350\)
Vì \(ƯCLN(a,b)=15\Rightarrow\hept{\begin{cases}a=15k\\b=15q\end{cases}}\left[k,q\inℕ^∗;(k,q)=1\right]\)
Ta có :
ab=1350
\(\Rightarrow15k.15q=1350\)
\((15.15).kq=1350\)
225.kq=1350
kq=1350:225
kq=6
ta có bảng giá tri thỏa mãn điều kiện \(k,q\inℕ^∗;(k,q)=1;kq=6;a+15=b\)
k | q | a | b |
2 | 3 | 30 | 45 |
Vậy có 1 cặp số \((a,b)\)thỏa mãn đề bài là:\((30;45)\)
Tìm hai số tự nhiên a và b, biết: BCNN(a,b)=300; ƯCLN(a,b)=15 và a+15=b.
Ta có :
a.b = 300. 15 = 4500 ( a ≥ b )
a = 15.m ; b = 15. n và UCLN(m,n) = 1 (m ≥ n)
Lại có :
a . b = 4500
15 .m . 15. n = 4500
225 . (m . n) = 4500
m.n = 20
Ta có bảng sau :
m | 5 | 20 Thử lại : a + 15 = b a + 15 = b
n | 4 | 1 60 + 15 = 75 ( chọn ) 15 + 15 = 300 ( loại )
a | 75 | 300 Vậy (a,b ) = ( 75 ; 60 )
b | 60 | 15