chứng minh 5+5^2+5^3+5^4+5^5+5^6+5^7+5^8 chia hết cho 30
Cho S=5+5^2+5^3+5^4+5^5+5^6+5^7+5^8+5^9+5^10
Chứng tỏ S chia hết cho 30
S = (5 + 52) + (53 + 54) +....+(59 + 510)
S = 1.30 + 52.30+....+58.30
S = 30.(1+52+....+58)
S chia hết cho 30
=> ĐPCM
\(S=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^9+5^{10}\right)\)
\(=30+5^2.\left(5+5^2\right)+...+5^8.\left(5+5^2\right)\)
\(=30+5^2.30+...+5^8.30\)
\(=30.\left(1+5^2+...+5^8\right)\text{ chia hết cho 30}\)
=> S chia hết cho 30 (đpcm).
cho S=5+5^2+5^3+5^4+5^5+5^6+5^7+5^8+5^9+5^10
chứng tỏ S chia hết cho 30
S=5+5^2+5^3+5^4+5^5+5^6+5^7+5^8+5^9+5^10
=>S=(5+5^2)+(5^3+5^4)+(5^5+5^6)+(5^7+5^8)+(5^9+5^10)
=>S=30+5^2(5+5^2)+5^4(5+5^2)+5^6(5+5^2)+5^8(5+5^2)
=>S=30+5^2.30+5^4.30+5^6.30+5^8.30
=>S=30(1+5^2+5^4+5^6+5^8)=> S chia hết cho 30
\(5+5^2+5^3+5^4+5^5+...+5^9+5^{10}\)
\(=5+5^2+5^2\left(5+5^2\right)+5^4\left(5+5^2\right)+...+5^8\left(5+5^2\right)\)
\(=\left(5+5^2\right)\left(1+5^2+5^4+5^6+5^8\right)\)
\(=30.\left(1+5^2+5^4+5^6+5^8\right)\)
vậy S chia hết cho 30
ko hiểu họi lại mik
tick mik nka
- Chứng minh : C = 5^1 + 5^2 + 5^3 + 5^4 + ... + 5^2010 chia hết cho 6 và 31 - Chứng minh : D = 7^1 + 7^2 + 7^3 + 7^4 + ... + 7^2010 chia hết cho 8 và 57
+) C=5+52+53+54+....+52010
<=> C=(5+52)+(53+54)+.....+(52009+52010)
<=> C=5(1+5)+53(1+5)+....+52009(1+5)
<=> C=5 x 6 +53 x 6+....+52009 x 6
<=> C=6(5+53+....+52009)
=> C chia hết cho 6 (đpcm)
+) C=5+52+53+54+....+52010
<=> C=(5+52+53)+(54+55+56)+....+(52008+52009+52010)
<=> C=5(1+5+25)+54(1+5+25)+....+52008(1+5+25)
<=> C=5 x 31+54x31 +....+52008 x 31
<=> C=31(5+54+....+52008)
=> C chia hết cho 31 (đpcm)
+) D=7+72+73+74+....+72010
<=> D=(7+72)+(73+74)+....+(72009+72010)
<=> D=7(1+7)+73(1+7)+....+72009(1+7)
<=> D=7 x 8 +73 x 8 +....+72009 x 8
<=> D=8(7+73+....+72009)
+) D=7+72+73+74+....+72010
<=> D=(7+72+73)+(74+75+76)+....+(72008+72009+72010)
<=> D=7(1+7+49)+74(1+7+49)+....+72008(1+7+49)
<=> D=7 x 57 +74 x 57+....+72008 x 57
<=> D=57(7+74+...+72008)
=> D chia hết cho 57 (đpcm)
A) Chứng minh: A=2^1+2^2+2^3+2^4+.........+2^2010 chia hết cho 3 và 7
B)Chứng minh:B=3^1+3^2+3^3+3^4+..........+2^2010 chia hết cho 4 và 13
C) Chứng minh C=5^1+5^2+5^3+5^4+.......+5^2010 chia hết cho 6 và 31
D) Chứng minh D=7^1+7^2+7^3+7^4+........+7^2010 chia hết cho 8 và 57
1 . chứng minh rằng : 30 mũ 5 x 7 - 6 mũ 5 x 5 mũ 3 x 25 x 4 chia hết cho 3
2 . chứng minh đẳng thức : 12 mũ 5 x 8 = 2 mũ 13 x 243
1.chứng minh:
a, A=2+22+23+24+...+260 chia hết cho 3
b, B=5+52+53+...+58 chia hết cho 30
2. chứng minh 2 số 2n+5 và 3n+7 nguyên tố cùng nhau
3. chứng minh: x+2y chia hết cho 5 khi và chỉ khi 3x-4y chia hết cho 5
\(A=2+2^2+2^3+...+2^{60}\)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)
\(=2.\left(1+2\right)+2^3.\left(1+2\right)+....+2^{59}.\left(1+2\right)\)
\(=3.\left(2+2^3+...+2^{59}\right)⋮3\)
Vậy....
\(B=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^7+5^8\right)\)
\(=\left(5+5^2\right)+5^2.\left(5+5^2\right)+...+5^6.\left(5+5^2\right)\)
\(=30.\left(1+5^2+...+5^6\right)⋮30\)
Bài 1 bạn kia giải rồi
2. Gọi d = ƯCLN(2n+5;3n+7) (\(d\inℕ^∗\) )
=> 2n+5 chia hết cho d ; 3n+7 chia hết cho d
=> 3.(2n+5) chia hết cho d ; 2.(3n+7) chia hết cho d
=> 6n+15 chia hết cho d ; 6n+14 chia hết cho d
=> (6n+15)-(6n+14) chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* nên d = 1
=> ƯCLN(2n+5;3n+7) = 1
Vậy 2n+5 và 3n+7 là hai số nguyên tố cùng nhau
3. Nếu x+2y chia hết cho 5
=> 3.(x+2y) chia hết cho 5
=> 3x+6y chia hết cho 5
Mà 10y chia hết cho 5
=> (3x+6y)-10y chia hết cho 5
=> 3x - 4y chia hết cho 5
=> ĐPCM
https://olm.vn/thanhvien/chaukhanhho giải đúng phần đó rồi
cho M=(5^9+5^8+5^7).(3^6+3^5+3^4+3^3+3^2+3^1) chứng minh M chia hết cho 2015
chứng minh rằng: tổng sau chia hết cho 31
\(5+5^2+5^3+5^4+5^5+5^6+5^7+5^8+5^9\)
\(5+5^2+5^3+5^4+5^5+5^6+5^7+5^8+5^9\)
\(=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+\left(5^7+5^8+5^9\right)\)
\(=5\times\left(1+5+5^2\right)+5^4\times\left(1+5+5^2\right)+5^7\times\left(1+5+5^2\right)\)
\(=5\times31+5^4\times31+5^7\times31\)
\(=31\times\left(5+5^4+5^7\right)⋮31\)
Vậy tổng trên chia hết cho 31
Bài làm :
Ta có :
\(5+5^2+5^3+5^4+5^5+5^6+5^7+5^8+5^9\)
\(=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+\left(5^7+5^8+5^9\right)\)
\(=5\times\left(1+5+5^2\right)+5^4\times\left(1+5+5^2\right)+5^7\times\left(1+5+5^2\right)\)
\(=5\times31+5^4\times31+5^7\times31\)
\(=31\times\left(5+5^4+5^7\right)⋮31\)
=> Điều phải chứng minh
(1+5^2+5^4+5^6+5^8).x=5+5^3+5^5+ ... 5^9
mình cần gấp
1.Chứng minh rằng:
A= 1+3+3^2+3^3+....+3^11 Chia hết cho 4
2. Chứng minh rằng:
C= 5+5^2+5^3+...+5^8 chia hết cho 30.
1:\(A=1+3+3^2+3^3+...+3^{11}\)
\(A=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{10}+3^{11}\right)\)
\(A=4+3^2\cdot\left(1+3\right)+...+3^{10}\cdot\left(1+3\right)\)
\(A=4+3^2\cdot4+....+3^{10}\cdot4\)
\(A=4\cdot\left(1+3^2+...+3^{10}\right)\) chia hết cho 4
Vì ta có 4 chia hết cho 4 => A có chia hết cho 4
Vậy A chia hết cho 4
2:
\(C=5+5^2+5^3+...+5^8\) chia hết cho 30
\(C=\left(5+5^2\right)+...+\left(5^7+5^8\right)\)
\(C=30+5^2\cdot\left(5+5^2\right)+...+5^6\cdot\left(5+5^2\right)\)
\(C=30\cdot1+5^2\cdot30+...5^6\cdot30\)
\(C=30\cdot\left(5^2+...+5^6\right)\)
Vì ta có 30 chia hết cho 30 nên suy ra C có chia hết cho 30
Vậy C có chia hết cho 30