Chứng minh tích của 7 STN liên tiếp chia hết cho 2101
Chứng minh rằng
a,tích của 2 STN liên tiếp chia hết cho 2
b, tích của 3 STN liên tiếp thì chia hết cho 3
a,ta có 2 STN liên tiếp là : a,a+1
a . (a + 1 )
Trường hợp 1
Nếu a là số chẵn thì \(⋮\)2 => a . ( a + 1 ) \(⋮\)2 ( Áp dụng tính chất : Nếu có 1 thừa số trong 1 tích chia hết cho số đó thì tích chia hết cho số đó : Ví dụ : 1 . 2 ; 2 chia hết cho 2 => 1.2 = 2 chia hết cho 2 ; 2.3 chia hết cho 2 vì 2 chia hết cho 2 )
Trường hợp 2
Nếu a là số lẻ => a + 1 là số chẵn chi hết cho 2 => a . (a + 1) chia hết cho 2
Vậy Tích của 2 số tự nhiên liên tiếp chia hết cho 2
Câu b :
ta gọi như câu a : a , a+1,a+2
ta có : a . ( a + 1 ) . ( a + 2 )
TH1 nếu a chia hết cho 3 => tích của 3 STH liên tiếp chai hết cho 3
TH2 Nếu a+1 chia hết cho 3 => Tích của 3 STH liên tiếp chai hết cho 3
TH3 nếu a + 2 chia hết cho 3 = > Tích của 3 STH liên tiếp chai hết cho 3
Chứng minh rằng tích của 2 STN liên tiếp chia hết cho 2
Ta có dạng: a(a+1)
Nếu a = 2k
2k(2k+1) chia hết cho 2
Nếu a = 2k+1
2k(2k+1+1) = 2k.2(k+1) chia hết cho 2
Ta có thể tìm các bội của một số khác 0 bằng cách nhân số đó lần lược cho 1, 2, 3, …
Ví dụ :
B(5) = {5.1, 4.2, 5.3, …} = {5, 10, 15, …}
Ta có thể tìm các ước của một số a (a > 1) bằng cách lần lược chia số a cho số tự nhiên từ 1 đến a để xét xem a chia hết cho những số nào, khi đó các số ấy là ước của a.
1/Chứng minh rằng
Tích của 2 số nguyên liên tiếp luôn chia hết cho 2
Tích của 2 STN liên tiếp luôn chia hết cho 6
Bài 2/Chứng minh
a,n.(n+1).(2n+1) chia hết cho 6
b.n mũ 2 +4n +3 chia hết cho 8
Chứng minh rằng:
a , Tích của ba STN liên tiếp thì chia hết cho 3
Gọi 3 só tự nhiên liên tiếp là: a; a+1; a+2
=> Tích của ba số tự nhiên liên tiếp là:
a(a+1)(a+2)
=a(1+2)
=a.3 ⋮3
Vậy tích của 3 số tự nhiên liên tiếp chia hết cho 3
Ta có thể tìm các bội của một số khác 0 bằng cách nhân số đó lần lược cho 1, 2, 3, …
Ví dụ :
B(5) = {5.1, 4.2, 5.3, …} = {5, 10, 15, …}
Ta có thể tìm các ước của một số a (a > 1) bằng cách lần lược chia số a cho số tự nhiên từ 1 đến a để xét xem a chia hết cho những số nào, khi đó các số ấy là ước của a.
1.Chứng minh rằn 3 STN liên tiếp thì sẽ có một số chia hết cho 3
2.Chứng minh rằng 4 STN liên tiếp thì có một số chia hết cho 4
3. Chứng minh rằng Nếu hai STN liên tiếp chùng chia cho 5 và có cùng số dư thì thì hiệu của chúng chia hết cho 5
Chú ý là chữ số liên tiếp một chữ chia hết cho 3 nha chứ ko phải là tổng chia hết cho 3 (áp dụng với bài 4 nữa)
1. gọi 3 stn liên tiếp là n,n+1,n+2
ta có n+n+1+n+2 = 3n +3 = 3(n+1) : hết cho 3
2. gọi 4 stn liên tiếp là n,n+1,n+2,n+3
ta có n+n+1+n+2+n+3 = 4n+6
vì 4n ; hết cho 4 mà 6 : hết cho 4
=> 4n+6 ko : hết cho 4
3. gọi 2 stn liên tiếp đó là a,b
ta có a=5q + r
b=5q1 +r
a-b = ( 5q +r) - (5q1+r)
= 5q - 5q1
= 5(q-q1) : hết cho 5
chứng minh tổng 3 STN liên tiếp chia hết cho 3 và 4 STN liên tiếp không chia hết cho 4.
các bạn có thể cho mình biết được không,đang cần gấp lắm.
chứng minh rằng : tổng của 3 stn liên tiếp cho 3. Còn tổng của 4 stn liên tiwwps k chia hết cho 4
gọi 3 stn liên tiếp là : a; a+1; a+2.
ta có: a+(a+1)+(a+2)=a+a+1+a+2=(a+a+a)+(1+2)=3.a+3=3.(a+1) chia hết cho 3
=> tổng của 3 stn liên tiếp chia hết cho 3.
gọi 4 stn liên tiếp là: a; a+1; a+2; a+3.
ta có: a+(a+1)+(a+2)+(a+3)=a+a+1+a+2+a+3=(a+a+a+a)+(1+2+3)=4.a+6. Vì 4.a chia hết cho 4 mà 6 ko chia hết cho 4 nên 4.a+6 ko chia hết cho 4
=> tổng 4 stn liên tiếp ko chia hết cho 4.
3 số đó có dạng: a+a+1+a+2 = 3a + 3 = 3(a+1)
Chia hết cho 3
4 số đó có dạng: a+a+1+a+2+a+3 = 4a + 6 = 4(a+1) + 2
4 a chia hết cho 4 mà 2 không chia hết cho 4
=> Không chia hết cho 4
a.CMR tích của 2 stn liên tiếp chia hết cho 2
b.CMR tich cua 3 stn lien tiep chia het cho 6
c.CMR tích của 4 stn liên tiếp chia hết cho 24
d.CMR tích của 5 stn liên tiếp chia hết cho 120
\(Nhanh+Đung.se.co.like.lien\)
ai tích cho tui đi để cho tui tròn 300 điểm coi!
tui sẽ cảm tạ = cách cho lại 3 l i k e !
1 cho abc-deg chia hết cjo 7
a, chứng minh rằng abcdeg chia hết 7
2 a, chứng minh rằng ; Tích của ba số tự nhiên liên tiếp thì chia hết cho 3 và cho 2
b, chứng minh ; Tích của 4 số tự nhiên liên tiếp luôn chia hết cho 4
c, chứng minh (n+3).(n+4).(2n+7) chia hết cho 3