Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Ngọc Ánh
Xem chi tiết
Vương Đức Hà
5 tháng 8 2020 lúc 15:50

a, A<B

b, A>B

       hok tốt

Khách vãng lai đã xóa
son goku
5 tháng 8 2020 lúc 15:53

a.A

b.A>B

Khách vãng lai đã xóa
Nguyễn Ngọc Ánh
5 tháng 8 2020 lúc 15:54

bạn trình bày hẳn ra

Khách vãng lai đã xóa
ffffff
Xem chi tiết
đàm vĩnh hưng
Xem chi tiết
loz
Xem chi tiết
Nguyễn Huy Tú
15 tháng 4 2017 lúc 13:21

Ta có: \(2004A=\dfrac{2004^{2004}+2004}{2004^{2004}+1}=1+\dfrac{2003}{2004^{2004}+1}\)

\(2004B=\dfrac{2004^{2003}+2004}{2004^{2003}+1}=1+\dfrac{2003}{2004^{2003}+1}\)

\(\dfrac{2003}{2004^{2004}+1}< \dfrac{2003}{2004^{2003}+1}\Rightarrow1+\dfrac{2003}{2004^{2004}+1}< 1+\dfrac{2003}{2004^{2003}+1}\)

\(\Rightarrow2004A< 2004B\)

\(\Rightarrow A< B\)

Vậy A < B

Hoàng Bảo Châu
Xem chi tiết
Nguyễn Anh Minh
Xem chi tiết
Nguyễn Minh Dương
23 tháng 8 2023 lúc 8:46

Ta có: \(2003^{2003}+1=2003^{2002+1}+1và2003^{2004}+1=2003^{2003+1}+1\)

\(\Rightarrow A>B\)

Đào Trí Bình
23 tháng 8 2023 lúc 9:13

A > B

ngô tiến đạt
Xem chi tiết
Nguyễn Anh Quân
7 tháng 1 2018 lúc 15:58

Có : 2004A = 2004^2004+2004/2004^2004+1 = 1 + 2003/2004^2004+1

2004B = 2004^2005+2004/2004^2005+1 = 1 + 2003/2004^2005+1 < 1 + 2003/2004^2004+1 = 2014A

=> A > B

Tk mk nha

ST
7 tháng 1 2018 lúc 16:22

\(B=\frac{2004^{2004}+1}{2004^{2005}+1}< \frac{2004^{2004}+1+2003}{2004^{2005}+1+2003}=\frac{2004^{2004}+2004}{2004^{2005}+2004}=\frac{2004\left(2004^{2003}+1\right)}{2004\left(2004^{2004}+1\right)}=\frac{2004^{2003}+1}{2004^{2004}+1}=A\)

Vậy A > B

ngô tiến đạt
8 tháng 1 2018 lúc 21:26

tớ có cách khác cũng ra kết quả giống bạn

Thị Thu Hà
Xem chi tiết
Nhật Hạ
16 tháng 7 2019 lúc 9:05

a, Ta có:  \(\frac{2012.2013}{2012.2013+1}< 1< \frac{2013}{2012}\) 

\(\Rightarrow\frac{2012.2013}{2012.2013+1}< \frac{2013}{2012}\)

b, \(A=\frac{2003.2004-1}{2003.2004}=1-\frac{1}{2003.2004}\)

\(B=\frac{2004.2005-1}{2004.2005}=1-\frac{1}{2004.2005}\)

Ta có: \(2003.2004< 2004.2005\)

\(\Rightarrow\frac{1}{2003.2004}>\frac{1}{2004.2005}\)

\(\Rightarrow1-\frac{1}{2003.2004}< 1-\frac{1}{2004.2005}\)

\(\Rightarrow A< B\)

hatsune miku
Xem chi tiết
Thảo Nguyễn『緑』
27 tháng 7 2019 lúc 11:40

\(A=\frac{2003\cdot2004-1}{2003\cdot2004}=1-\frac{1}{2003\cdot2004}\)

\(B=\frac{2004\cdot2005-1}{2004\cdot2005}=1-\frac{1}{2004\cdot2005}\)

Vì 1 = 1 và \(\frac{1}{2003\cdot2004}>\frac{1}{2004\cdot2005}\) nên A > B

Vậy A > B

Chắc sai =))

Jennie Kim
27 tháng 7 2019 lúc 11:43

\(A=\frac{2003\cdot2004-1}{2003\cdot2004}=\frac{2003\cdot2004}{2003\cdot2004}-\frac{1}{2003\cdot2004}=1-\frac{1}{2003\cdot2004}\)

\(B=\frac{2004\cdot2005-1}{2004\cdot2005}=\frac{2004\cdot2005}{2004\cdot2005}-\frac{1}{2004\cdot2005}=1-\frac{1}{2004\cdot2005}\)

có : \(\frac{1}{2003\cdot2004}>\frac{1}{2004\cdot2005}\)

\(\Rightarrow1-\frac{1}{2003\cdot2004}< 1-\frac{1}{2004\cdot2005}\)

\(\Rightarrow A< B\)