Tính nhanh : \(\frac{1}{2}+\frac{1}{3}+\frac{1}{6}+\frac{1616}{101}\)
Tính nhanh : \(\frac{1}{2}+\frac{1}{3}+\frac{1}{6}+....+\frac{1616}{101}\)
A=\(\frac{-3}{5}+\left(\frac{-2}{5}+2\right)\)
\(B=\left(6-2\frac{4}{5}\right)\times3\frac{1}{8}-1\frac{3}{5}=\frac{1}{4}\)
Tính nhanh
\(A=\frac{5}{1\times7}+\frac{5}{4\times7}+\frac{5}{7\times10}+......+\frac{5}{101\times104}\)
A và B dễ
Bài 2:
sai đề bài vì ngay từ cái phép tính đầu đã ko theo quy luật rồi
\(A=\frac{-3}{5}-\frac{2}{5}+2\)
\(A=-1+2=1\)
\(B=\left(6-\frac{14}{5}\right).\frac{25}{8}-\frac{8}{5}=\frac{1}{4}\)
nÀ NÍ sao lại = đây là dấu trừ hay cộng 1/4
Tính nhanh :
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{101\cdot102}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{101}-\frac{1}{102}\)
\(=1-\frac{1}{102}\)
\(=\frac{101}{102}\)
1/1.2 + 1/2.3 + 1/3.4 + ... + 1/101.102
Đặt A = 1/1.2 +1/2.3 + 1/3.4 + ... + 1/101.102
A = 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/101 - 1/102
A = 1/1 - 1/02
A = 101/102
Vậy A = 101/102
1/1.2 + 1/2.3 + 1/3.4 + ... + 1/101.102
Đặt A = 1/1.2 +1/2.3 + 1/3.4 + ... + 1/101.102
A = 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/101 - 1/102
A = 1/1 - 1/02
A = 101/102
Vậy A = 101/102
Tính \(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{102}}{\frac{101}{1}+\frac{100}{2}+\frac{99}{3}+...+\frac{1}{101}}\)
Tính \(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{102}}{\frac{101}{1}+\frac{100}{2}+\frac{99}{3}+...+\frac{1}{101}}\)
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{102}}{\frac{101}{1}+\frac{100}{2}+\frac{99}{3}+...+\frac{1}{101}}\)
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{102}}{\left(\frac{100}{2}+1\right)+\left(\frac{99}{3}+1\right)+...+\left(\frac{1}{101}+1\right)+1}\)
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{102}}{\frac{102}{2}+\frac{102}{3}+...+\frac{102}{101}+\frac{102}{102}}\)
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{102}}{102.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{101}+\frac{1}{102}\right)}\)
\(A=\frac{1}{102}\)
Cho \(M=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.........\frac{99}{100}\)và \(N=\frac{2}{3}.\frac{4}{5}.\frac{6}{7}.......\frac{100}{101}\)Tính tích M.N
Ai nhanh mik tick cho
Ta có:
Tích của M và N là:
Tử: 1*2*3*4*5*............*99*100(Tích của tử M và N)
Mẫu: 2*3*4*5*6*......*100*101(Tích của mẫu M và N)
Rút gọn cho nhau ta được:
1/101
Vậy M*N=1/101
M.N=1/2.2/3.3/4.4/5.5/6.........99/100.100/101
=1/101
B1:Tính hợp lí
a) \(1-\frac{1}{2}\left(1+2\right)-\frac{1}{3}\left(1+2+3\right)-...-\frac{1}{101}\left(1+2+...+101\right)\)
B2
Chứng minh \(1.3.5....99=\frac{51}{2}.\frac{52}{2}.\frac{53}{2}....\frac{100}{2}\)
Giải nhanh nhé .Mình đag cần gấp .Cảm ơn!
CMR:
a)\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^7}\) <1
b)\(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{4^4}+....+\frac{101}{3^{101}}\),<3/4
nhanh nhé
a) Ta có
\(A=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^7}\)
\(2A=1+\frac{1}{2}+...+\frac{1}{2^6}\)
\(2A-A=\left(1+\frac{1}{2}+...+\frac{1}{2^6}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^7}\right)\)
\(A=1-\frac{1}{2^7}\)
Do \(1-\frac{1}{2^7}< 1\Rightarrow A< 1\left(đpcm\right)\)
Chứng minh rằng :\(\frac{1}{3^1}+\frac{2}{3^2}+\frac{3}{3^3}+.....+\frac{100}{3^{100}}+\frac{101}{3^{101}}< \frac{3}{4}\)
Nhanh lên nhé . Mk đang cần gấp
Đặt \(S=\frac{1}{3}+\frac{2}{3^2}+.......+\frac{101}{3^{101}}\)
\(\Rightarrow3S=1+\frac{2}{3}+.......+\frac{101}{3^{100}}\)
\(\Rightarrow3S-S=\left(1+\frac{2}{3}+..+\frac{101}{3^{100}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+..+\frac{101}{3^{101}}\right)\)
\(\Rightarrow2S=1+\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{100}}-\frac{101}{3^{101}}< 1+\frac{1}{3}+....+\frac{1}{3^{100}}\)
\(\Rightarrow6S< 3+1+........+\frac{1}{3^{99}}\)
\(\Rightarrow6S-2S< \left(3+1+....+\frac{1}{3^{99}}\right)-\left(1+\frac{1}{3}+....+\frac{1}{3^{100}}\right)\)
\(\Rightarrow4S< 3-\frac{1}{3^{100}}< 3\Rightarrow S< \frac{3}{4}\)
Đặt \(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}+\frac{101}{3^{101}}\)
\(3A=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}+\frac{101}{3^{100}}\)
\(3A-A=\left(1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{101}{3^{100}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+...+\frac{101}{3^{101}}\right)\)
\(2A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}-\frac{101}{3^{101}}\)
\(6A=3+1+\frac{1}{3}+...+\frac{1}{3^{99}}-\frac{101}{3^{100}}\)
\(6A-2A=\left(3+1+\frac{1}{3}+...+\frac{1}{3^{99}}-\frac{101}{3^{100}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}-\frac{101}{3^{101}}\right)\)
\(4A=3-\frac{101}{3^{100}}-\frac{1}{3^{100}}+\frac{101}{3^{101}}\)
\(4A=3-\frac{303}{3^{101}}-\frac{3}{3^{101}}+\frac{100}{3^{101}}\)
\(4A=3-\frac{206}{3^{101}}< 3\)
=>\(4A< 3\)
\(\Rightarrow A< \frac{3}{4}\)