Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 6 2017 lúc 18:03

Câu a: Đúng     Câu b: Sai     Câu c: Sai

Câu d: Đúng     Câu e: Đúng     Câu f: Sai

Câu g: Đúng     Câu h: Đúng     Câu i: Sai

Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
8 tháng 6 2017 lúc 13:53

Các câu đúng : a, d, e, g, h

Các câu sai : b, c, f, i

Khuê Lê
Xem chi tiết
Nguyễn sơn bảo
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 5 2019 lúc 5:02

Theo tính chất tia phân giác, ta có:

AI là tia phân giác của góc BAC

⇒ IE = IF

Tương tự: CI là tia phân giác của góc ACB

⇒ IE = ID

Do đó: IE = IF = ID

Vậy 3 điểm D, E, F cùng nằm trên đường tròn tâm I

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 11 2017 lúc 14:09

Theo tính chất tia phân giác, ta có:

AI là tia phân giác của góc BAC

⇒ IE = IF

Tương tự: CI là tia phân giác của góc ACB

⇒ IE = ID

Do đó: IE = IF = ID

Vậy 3 điểm D, E, F cùng nằm trên đường tròn tâm I

Nguyễn Đặng Minh Nhật
Xem chi tiết
nguyen tran ky anh
Xem chi tiết
Trần Thùy
Xem chi tiết
alibaba nguyễn
2 tháng 8 2017 lúc 18:57

Gọi I là giao điểm của MN và AC.

Ta có: \(\widehat{IHO}=\widehat{OEI}=90°\)

\(\Rightarrow\)Tứ giác EIHO nội tiếp đường tròn.

\(\Rightarrow\)Tâm của đường tròn ngoại tiếp ∆OHE nằm trên đường trung trực của EI.(*)

Ta có ∆AIH \(\approx\)∆AOE 

\(\Rightarrow\)AH.AO = AE.AI (1)

Ta có: ∆AMB \(\approx\)AOM

\(\Rightarrow\)AM2 = AH.AO (2)

Ta lại có: ∆ABM \(\approx\)∆AMC

\(\Rightarrow\)AM2 = AB.AC (3)

Từ (1), (2), (3) \(\Rightarrow\)AE.AI = AB.AC

Vì A,B,C,E cố định nên I cố định (**)

Từ (*), (**) suy ta tâm đường tròn ngoại tiếp ∆OHE nằm trên đường trung trực của EI.

PS: không chứng minh được nó nằm trên đường tròn nha b. Hình tự vẽ.

Trần Thùy
3 tháng 8 2017 lúc 7:47

bạn cho mình hỏi tại sao tam giác ABM đồng dạng với tam giác AMC vậy?. Mình ko hiểu chỗ đó

alibaba nguyễn
3 tháng 8 2017 lúc 8:26

Ta có:

\(\widehat{BAM}=\widehat{MAC}\)(là góc chung)

\(\widehat{BMA}=\widehat{ACM}\) (Do AM là tiếp tuyến tại M của (O) và 2 góc đó cùng chắn cung MB)

\(\Rightarrow\Delta ABM\approx\Delta AMC\)