Tìm a,b,c với n nguyên dương để aaaa...abbb...bcccc...+1=(ddd...dd+1)2( n chữ số a,b,c,d)
Cho n là số nguyên dương, tìm a,b,c để aaaa...abb...b=(ccc...c)2( n chữ só a,b,c)
\(\overline{aa...abb...b}=\left(\overline{cc...c}\right)^2\)
\(\Leftrightarrow a.11...1.10^n+b.11...1=c^2.11...1^2\)
\(\Leftrightarrow a.10^n+b=c^2.11...1\)
\(\Leftrightarrow a.\left(9k+1\right)+b=c^2.k\)(với \(k=11...1\)(\(n\)chữ số \(1\)))
\(\Leftrightarrow\left(c^2-9a\right)k=a+b\)
Với \(k=1\)ta có: \(c^2=10a+b\)ta có các bộ số:
\(\left(1,6,4\right),\left(2,5,5\right),\left(3,6,6\right),\left(4,9,7\right),\left(6,4,8\right),\left(8,1,9\right)\)
Với \(k=11\)ta có \(11\left(c^2-9a\right)=a+b\)nên \(\hept{\begin{cases}a+b=11\\c^2-9a=1\end{cases}}\)ta có nghiệm duy nhất \(\left(7,4,8\right)\).
Với \(n>2\)ta thấy hiển nhiên không thỏa mãn do \(a+b< 19\).
Ở đây mình làm trường hợp là nó đúng chỉ với 1 giá trị của \(n\). Do đó ta xét với \(n=1,n=2,...\), tức là \(k=1,k=11,...\). Còn nếu đề là đúng với mọi số nguyên dương \(n\)thì sẽ làm khác một chút, và ra đáp án là không tồn tại giá trị nào cả.
\(\overline{aa...abb...b}+1=\left(cc...c+1\right)^2\)
\(\Leftrightarrow a.k.10^n+b.k+1=\left(c.k+1\right)^2,k=11...1\)
\(\Leftrightarrow ak.\left(9k+1\right)+bk=c^2k^2+2ck\)
\(\Leftrightarrow a\left(9k+1\right)+b=c^2k+2c\)
\(\Leftrightarrow k\left(9a-c^2\right)=2c-b-a\)
Đẳng thức trên đúng với mọi \(k\inℕ^∗\)nên \(\hept{\begin{cases}9a-c^2=0\\2c-a-b=0\end{cases}}\)
Từ \(9a-c^2=0\)ta có các trường hợp \(\left(a,c\right)\in\left\{\left(1,3\right),\left(4,6\right),\left(9,9\right)\right\}\).
Kết hợp với \(2c-a-b=0\)ta có các trường hợp sau thỏa mãn: \(\left(a,b,c\right)\in\left\{\left(1,5,3\right),\left(4,8,6\right),\left(9,9,9\right)\right\}\).
1. Tìm số có 6 chữ số \(\overline{abcdef}\) sao cho \(\overline{abcdef}=\left(\overline{abc}+\overline{def}\right)^2\)
2. Tìm các chữ số a,b,c,d sao cho \(\forall n\in N\) ta có :
\(\overline{aaa...abbb..bccc...c}+1=\left(\overline{ddd...d}+1\right)^2\) ( mỗi chữ số a,b,c,d xuất hiện n lần )
Nguyễn Thành Trương, Vũ Minh Tuấn, Băng Băng 2k6, Trần Thanh Phương, Nguyễn Lê Phước Thịnh, tth,
Nguyễn Văn Đạt, Hồ Bảo Trâm, Lê Thị Thục Hiền, @Akai Haruma, @Nguyễn Việt Lâm
giúp e vs ạ! Cần gấp! Thanks!
Bài 1:
Đặt: \(\left\{{}\begin{matrix}A=\overline{abc}\\B=\overline{def}\end{matrix}\right.\left(100\le A;A,B\le999\right)\)
Khi đó ta có: \(999A=\left(A+B\right)\left(A+B-1\right)\)
Vì: \(A\le999\) nên:
\(\Rightarrow\left(A+B\right)\left(A+B-1\right)\le999^2\)
\(\Rightarrow A+B\le999\)
Xét các trường hợp \(A=999\) và \(A< 999\) từ đó :
\(\Rightarrow\overline{abcdef}=494209\)
Vậy số cần tìm là: \(494209\)
Với mọi n nguyên dương tìm a,b,c đẻ:
aaaa....bbbbb+1=(ccc..c+1)2
tìm các số a,b,c sao cho với mọi số nguyên dương n ta đều có:
aa..abb..b +1 (n chữ số a và n chữ số b) = (c...c +1)^2 (n chữ số c)
tìm các chữ số a,b,c sao cho với mọi số nguyên dương n ta đều có:
aa...abb...b(n chữ số a; n chữ số b)+1 = (cc...c +1)2 (n chữ số c)
Bài 1 : Tìm tất cả các số nguyên dương n biết n + tổng các chữ số của nó = 2013
Bài 2 : Cho các số nguyên dương a, b, c, d, e, g thỏa mãn:a2 + b2 + c2 = d2 + e2 + g2. Hỏi a + b + c + d + e + g là hợp số hay số nguyên tố?
Bài 1: n có 4 chữ số dạng 20ab => 20ab + 2 + a +b=2013 => 11a+b=11
a=0 => b=11(loại)
a=1 => b=0 => n=2010
với n<2000 => tổng các chữ số của n lớn nhất là: 1+9+9+9=28 => n ≥ 2013-28=1985
xét n có dạng 19ab: 19ab+1+9+a+b=2013 => 11a+b=103
do n ≥ 1985 => a ≥ 8
a=8 => b=7,5 (loại)
a=9 => b=2 => n=1992
Bài 2: Chắc là hợp số :D
từ \(a^2+b^2+c^2=e^2+f^2+d^2\)
=> \(a^2+b^2+c^2\text{ ≡}d^2+e^2+f^2\)(mod 2)
=> \(a^2+b^2+c^2+2\left(ab+bc+ca\right)\) ≡ \(d^2+e^2+f^2+2\left(de+ef+fd\right)\)(mod 2)
=>\(\left(a+b+c\right)^2\text{ ≡}\left(d+e+f\right)^2\) (mod 2)
=>a+b+c ≡ d+e+f (mod 2)
=> a+b+c+d+e+f chia hết cho 2
1)Cho a,b,c đôi một khác nhau và khác 0 biết: ab(gạch đầu) là số nguyên tố và ab(gạch đầu) /bc(gạch đầu)=b/c. Tìm abc(gạch đầu)
2) Cho tỉ lệ thức ab(gạch đầu)/bc(gạch đầu)= a/c. Chứng minh rằng: abbb...b(gạ ch đầu)(có n chữ số b) /bbb...bbc(gạch đầu)(có n chữ số b) = a/c
1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố
2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố
3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương
4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p
5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2 = ab +c ( a + b )
Chứng minh: 8c + 1 là số cp
6, Cho các số nguyên dương phân biệt x,y sao cho ( x – y )^4 = x^3 – y^3
Chứng minh: 9x – 1 là lập phương đúng
7, Tìm các số nguyên tố a,b,c sao cho a^2 + 5ab + b^2 = 7^c
8, Cho các số nguyên dương x,y thỏa mãn x > y và ( x – y, xy + 1 ) = ( x + y, xy – 1 ) = 1
Chứng minh: ( x + y )^2 + ( xy – 1 )^2 không phải là số cp
9, Tìm các số nguyên dương x,y và số ngtố p để x^3 + y^3 = p^2
10, Tìm tất cả các số nguyên dương n để 49n^2 – 35n – 6 là lập phương 1 số nguyên dương
11, Cho các số nguyên n thuộc Z, CM:
A = n^5 - 5n^3 + 4n \(⋮\)30
B = n^3 - 3n^2 - n + 3 \(⋮\)48 vs n lẻ
C = n^5 - n \(⋮\)30
D = n^7 - n \(⋮\)42
a) Tìm số nguyên dương n để 4n +4 là số nguyên tố
b) Tìm số nguyên dương n để n3 - n2 +n - 1 là số nguyên tố
c) Tìm số tự nhiên nhỏ nhất n để n4 + (n+1)4 là hợp số