Tìm 2 giá trị số thập phân của x biết: 0,61 nhỏ hơn x nhỏ hơn 0,62
Tìm 2 giá trị số thập phân của x biết 12,2 nhỏ hơn x-5,5 nhỏ hơn 12,3
Tìm phân số có tử bằng 9 biết giá trị của nó lớn hơn -11/3,nhỏ hơn -11/5
vì phân số có tử =9
nên => pso là 9/x
giá trị của nó lớn hơn -11/13 và nhỏ hơn -11/15 nên -11/13>9/x>-11/15
tính toán rồi=>x=-11 và x=-12 thỏa mãn
=> pso là 9/-11 và 9/-12
Tìm phân số có tử bằng 9 biết giá trị của nó lớn hơn -11/3 và nhỏ hơn -11/15
1:Tìm GTNN x^2+y^2 biết :(x^2-y^2+1)+4x^2y^2-x^2-y^2=0
2:Cho a nhỏ hơn hoặc =a,b,c nhỏ hơn hoặc =1.Tìm GTNN,GTLN của biểu thức:P=a+b+c-ab-bc-ca
3:cho các số thực nguyên thỏa mãn điều kiện :x^2+y^2+z^2 nhỏ hơn hoặc = 27.Tìm giá trị nhỏ nhất ,GTLN x+y+z+xy+yz+zx
4: cho x,y dương thỏa mãn dk: x+y=1.Tìm GTNN:M=(x+1/x)+(y+1/y)
Tìm các số hữu tỉ có dạng 7/a biết rằng giá trị của số đó lớn hơn -9/11 và nhỏ hơn -9/13.
Ghi lời giải ra nha các bạn !!!
\(-\frac{9}{11}< \frac{7}{a}< -\frac{9}{13}\Leftrightarrow\frac{7}{-\frac{7\cdot11}{9}}< \frac{7}{a}< \frac{7}{-\frac{7\cdot13}{9}}\)
\(\Leftrightarrow\frac{7}{-8,\left(5\right)}< \frac{7}{a}< \frac{7}{-10,\left(1\right)}\)
a nguyên nên có thể bằng -8;-9;-10.
Kết luận: có 3 số hữu tỷ có dạng 7/a lớn hơn -9/11 và nhỏ hơn -9/13.
a) Tìm các giá trị nguyên của x để phân số sau nhận các giá trị nguyên:
A= 6x +9/ 3x+2
b) Tìm giá trị nhỏ nhất của biểu thức :
A=| x | + | 8-x |
\(a)\) Ta có :
\(A=\frac{6x+9}{3x+2}=\frac{6x+4+5}{3x+2}=\frac{6x+4}{3x+2}+\frac{5}{3x+2}=\frac{2\left(3x+2\right)}{3x+2}+\frac{5}{3x+2}=2+\frac{5}{3x+2}\)
Để A có giá trị nguyên thì \(\frac{5}{3x+2}\) phải nguyên hay \(5\) chia hết cho \(3x+2\)\(\Rightarrow\)\(\left(3x+2\right)\inƯ\left(5\right)\)
Mà \(Ư\left(5\right)=\left\{1;-1;5;-5\right\}\)
Suy ra :
\(3x+2\) | \(1\) | \(-1\) | \(5\) | \(-5\) |
\(x\) | \(\frac{-1}{3}\) | \(-1\) | \(1\) | \(\frac{-7}{3}\) |
Mà \(x\) là số nguyên nên \(x\in\left\{-1;1\right\}\)
Vậy \(x\in\left\{-1;1\right\}\)
Chúc bạn học tốt ~
\(b)\) Ta có bất đẳng thức giá trị tuyệt đối như sau :
\(\left|x\right|+\left|y\right|\ge\left|x+y\right|\)
Dấu "=" xảy ra khi và chỉ khi \(xy\ge0\)
Áp dụng vào ta có :
\(A=\left|x\right|+\left|8-x\right|\ge\left|x+8-x\right|=\left|8\right|=8\)
Dấu "=" xảy ra khi và chỉ khi \(x\left(8-x\right)\ge0\)
Trường hợp 1 :
\(\hept{\begin{cases}x\ge0\\8-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\le8\end{cases}\Leftrightarrow}0\le x\le8}\)
Trường hợp 2 :
\(\hept{\begin{cases}x\le0\\8-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le0\\x\ge8\end{cases}}}\) ( loại )
Vậy GTNN của \(A=8\) khi \(0\le x\le8\)
Chúc bạn học tốt ~
[...]5chia hết 3x+2
3x+2thuoc tập ước của 5
[...]
bài 1 ) tìm 2 phân số có tử = 9 biết giá trị của mỗi phân số đó lớn hơn -11/13 và nhỏ hơn -11/15
bài 2) cho M = x^2 -5/x^2 -2 (x thuộc Z ). Tìm x thuộc Z để M là số nguyên
bài 3 ) cho 6 số nguyên dương a<b<c<d<m<n
chứng minh rằng a+c+m/a+b+c+d+m+n<1/2
Tìm giá trị nhỏ nhất của Q= 1/a + 2/b + 3/c biết
21ab + 2bc + 8ac nhỏ hơn hoặc bằng 12
Tìm giá trị nhỏ nhất của biểu thức A biết :
A= \(\sqrt[]{x^2+9+2019}\)
Lời giải:
Ta thấy: $x^2\geq 0$ với mọi $x$ nên $x^2+9+2019\geq 9+2019=2028$
$\Rightarrow A=\sqrt{x^2+9+2019}\geq \sqrt{2028}$
Vậy GTNN của $A$ là $\sqrt{2028}$ khi $x=0$