Cho p và p+14 là các số nguyên tố . Chứng minh rằng p+7 là hợp số
n>2 và n ko chia hết cho 3.chứng minh rằng n2-1 và n2+1 ko thể đồng thời là số nguyên tố
cho p và p+4 là các số nguyên tố(p>3).chứng minh p+8 là hợp số
cho p và p+8 là số nguyên tố (p>3).hỏi p+100 là số nguyên tố hay hợp số
chứng minh rằng :8p-1 là số nguyên tố thì 8p+1 là hợp số
tìm p;q là số nguyên tố sao cho 7p+qvaf pq+11 đều là số nguyên tố
tìm các số nguyên tố a,b,c sao cho: 2a+3b+6c=78
tìm số nguyên tơố p sao cho các số sau đều là số nguyên tố:
a)p+2 và p+10
b) p+10 và p+20
1) Cho A=1234567891011...99 là số nguyên tố hay hợp số
2) Tìm số nguyên tố p<200 biết p chia cho 60 có số dư là hợp số
3) Chứng tỏ các số: 111..11(n chữ số) - 10n và 111..112111...1 là hợp số
4) Cho p; p+20; p+40 là số nguyên tố. Chứng minh rằng p+80 là số nguyên tố.
5) Cho 3 số a;b;c khác o thỏa mãn:
ab=c; bc=4a; ca=96; Tìm a;b;c
Chứng minh rằng:
a, Nếu p và p2+8 là các số nguyên tố thì p2+2 cũng là số nguyên tố.
b, Nếu p và 8p2+1 là các số nguyên tố thì 2p+1 cũng là số nguyên tố.
Chứng minh rằng:
a, Nếu p và p2+8 là các số nguyên tố thì p2+2 cũng là số nguyên tố.
b, Nếu p và 8p2+1 là các số nguyên tố thì 2p+1 cũng là số nguyên tố.
a) - Do p là số nguyên tố nên p là số tự nhiên.
*) Xét p=3k+1 => \(p^2+8=\left(3k+1\right)^2+8=9k^2+6k+9⋮3\) (hợp số)
*) Xét p=3k+2 => \(p^2+8=\left(3k+2\right)^2+8=9k^2+12k+12⋮3\) (hợp số)
*) Xét p=3k => k=1 do p là số nguyên tố => \(p^2+8=9+8=17\) (t/m)
Ta có: \(p^2+2=11\). Mà 11 là số nguyên tố => điều phải chứng minh.
b) (Làm tương tự bài trên)
- Do p là số nguyên tố => p là số tự nhiên.
*) Xét p=3k+1 => \(8p^2+1=8\left(3k+1\right)^2+1=8\left(9k^2+6k+1\right)+1=3k.8\left(3k+2\right)+\left(8+1\right)⋮3\)(hợp số)
*) Xét p=3k+2 => \(8p^2+1=8\left(3k+2\right)^2+1=8\left(9k^2+12k+4\right)+1=3k.8\left(3k+4\right)+\left(32+1\right)⋮3\) (hợp số)
*) Xét p=3k => k=1 Do p là số nguyên tố => \(8p^2+1=8.9+1=73\)(t/m)
Ta có : \(2p+1=7\). Mà 7 là số nguyên tố => Điều phải chứng minh.
Cho p là 1 số nguyên tố lớn hơn 3 và 5p+1 cũng là số nguyên tố . Chúng minh rằng 7p+1 là hợp số
BÀI 1 : Chứng minh rằng: nếu p và 2p+1 là các số nguyên tố lớn hơn 3 thì 4p+1 là hợp số.
BÀI 2 : 12 chia hết cho [2xt1]
BÀI 3 : 12x + 8x và x>2
NHANH LÊN NHÉ,MÌNH LIKE CHO
cho p là 1 số nguyên tố . chứng minh rằng hai số 8p-1 và 8p+1 không đồng thơì là số nguyên tố
Cho m và n là các số tự nhiên, m là số tự nhiên lẻ. Chứng tỏ rằng m và mn+8 là hai số nguyên tố cùng nhau.
Gọi UCLN(m; mn + 8) là d
=> m chia hết cho d => mn chia hết cho d
và mn + 8 chia hết cho d
Do đó 8 chia hết cho d => d thuộc {1; 2; 4; 8}
Mà m lẻ và m chia hết cho d => d lẻ
Do đó d = 1
=> UCLN(m; mn + 8) = 1
hay 2 số này nguyên tố cùng nhau
Vậy...