Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phan Văn Hiếu
Xem chi tiết
๖ACE✪Hoàngミ★Việtツ
23 tháng 9 2017 lúc 21:45

Áp dụng bất đẳng thức \(\frac{1}{xy}\ge\frac{4}{\left(x+y\right)^2}\)với \(x>0,y>0\)thì

\(\frac{a}{b+c}+\frac{c}{d+a}=\frac{a^2+ad+bc+c^2}{\left(b+c\right)\left(a+d\right)}\ge\frac{4\left(a^2+ad+bc+c^2\right)}{\left(a+b+c+d\right)^2}\)\(\left(1\right)\)

Tương tự :\(\frac{b}{c+d}+\frac{d}{a+b}\ge\frac{4\left(b^2+ab+cd+d^2\right)}{\left(a+b+c+d\right)^2}\)\(\left(2\right)\)

Cộng\(\left(1\right)\)với \(\left(2\right)\)được

\(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\ge\frac{a\left(a^2+b^2+c^2+d^2+ad+bc+ad+cd\right)}{\left(a+b+c+d\right)^2}=4B\)

Cần chứng minh \(B\ge\frac{1}{2}\), bất đẳng thức này tương dương với

\(2B\ge1\Leftrightarrow2\left(a^2+b^2+c^2+d^2+ad+bc+ab+cd\right)\ge\left(a+b+c+d\right)^2\)

\(\Leftrightarrow a^2+b^2+c^2+d^2-2ac-2bd\ge0\)

\(\Leftrightarrow\left(a-c\right)^2+\left(b-b\right)^2\ge0\)(đúng)

Dấu "="xảy ra \(\Leftrightarrow\orbr{\begin{cases}a=c\\b=d\end{cases}}\)

Vũ Thu Mai
23 tháng 9 2017 lúc 21:59

ta đặt \(A=\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}=\frac{a^2}{ab+ac}+\frac{b^2}{bc+bd}+\frac{c^2}{cd+ca}+\frac{d^2}{ad+db}\)

Áp dụng bất đẳng thức svác sơ ta có 

\(A\ge\frac{\left(a+b+c+d\right)^2}{ab+bc+cd+da+2ac+2bd}\)

mặt khác ta có 

\(\left[\left(a+c\right)+\left(b+d\right)\right]^2=\left(a+c\right)^2+\left(b+d\right)^2+2\left(a+c\right)\left(b+d\right)\)

\(=a^2+c^2+b^2+d^2+2ac+2bd+2\left(ab+ad+bc+cd\right)=a^2+c^2+b^2+d^2+ab+ad+cb+cd+\left(2ac+2bd+ab+ad+cb+cd\right)\)

đến đây cậu dùng cô si ta có 

\(a^2+c^2\ge2ac;b^2+d^2\ge2bd\)

cộng vào ta sẽ ra điêu phải chứng minh

cách hơi cùi một chút nhưng chắc là vẫn được

CớmĐông Lĩnh
Xem chi tiết
Đinh Duy Anh
Xem chi tiết
Trà My
4 tháng 4 2017 lúc 17:26

lớp 6 làm thì hơi dài đấy, nếu bạn muốn thì có thể áp dụng các bất đẳng thức của lớp trên cho nhanh

Quốc Bảo
Xem chi tiết
Kuro Kazuya
31 tháng 1 2017 lúc 3:04

Áp dụng BĐT \(\frac{1}{ab}\ge\frac{4}{\left(a+b\right)^2}\) với a , b > 0 ta có :

\(\frac{a}{b+c}+\frac{c}{d+a}=\frac{a\left(d+a\right)+c\left(b+c\right)}{\left(b+c\right)\left(d+a\right)}=\frac{ad+a^2+bc+c^2}{\left(b+c\right)\left(d+a\right)}\ge\frac{4\left(ad+a^2+bc+c^2\right)}{\left(a+b+c+d\right)^2}\) ( 1 )

\(\frac{b}{c+d}+\frac{d}{a+b}=\frac{b\left(a+b\right)+d\left(c+d\right)}{\left(a+b\right)\left(c+d\right)}=\frac{ab+b^2+cd+d^2}{\left(a+b\right)\left(c+d\right)}\ge\frac{4\left(ab+b^2+cd+d^2\right)}{\left(a+b+c+d\right)^2}\) ( 2 )

Từ ( 1 ) và ( 2 ) cộng theo từng vế:

\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\ge\frac{4\left(ab+bc+cd+ad+a^2+b^2+c^2+d^2\right)}{\left(a+b+c+d\right)^2}\)

Cần chứng minh rằng \(\frac{\left(ab+bc+cd+ad+a^2+b^2+c^2+d^2\right)}{\left(a+b+c+d\right)^2}\ge\frac{1}{2}\)

\(\Rightarrow2\left(ab+bc+cd+ad+a^2+b^2+c^2+d^2\right)\ge\left(a+b+c+d\right)^2\)

\(\Rightarrow2ab+2bc+2cd+2ad+2a^2+2b^2+2c^2+2d^2\ge a^2+b^2+c^2+d^2+2ab+2ac+2ad+2bc+2cd+2bd\)

\(\Rightarrow a^2+b^2+c^2+d^2\ge2ac+2bd\)

\(\Rightarrow a^2-2ac+c^2+b^2-2bd+d^2\ge0\)

\(\Rightarrow\left(a-c\right)^2+\left(b-d\right)^2\ge0\left(đpcm\right)\)

Vậy \(\frac{ab+bc+cd+ad+a^2+b^2+c^2+d^2}{\left(a+b+c+d\right)^2}\ge\frac{1}{2}\)

\(\Rightarrow\frac{4\left(ab+bc+cd+ad+a^2+b^2+c^2+d^2\right)}{\left(a+b+c+d\right)^2}\ge2\)

\(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\ge\frac{4\left(ab+bc+cd+ad+a^2+b^2+c^2+d^2\right)}{\left(a+b+c+d\right)^2}\)

Vậy \(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\ge2\)

Thắng Nguyễn
Xem chi tiết
Phạm Ngọc Hoàng
Xem chi tiết
Nguyễn Phương Thảo
5 tháng 2 2020 lúc 16:34

Áp dụng BĐT bunhiacopxki cho 2 bộ số \(\left(\sqrt{a}.\sqrt{b+c};\sqrt{b}.\sqrt{d+c};\sqrt{c}.\sqrt{d+a};\sqrt{d}.\sqrt{a+b}\right)\)

và \(\left(\frac{\sqrt{a}}{\sqrt{b+c}};\frac{\sqrt{b}}{\sqrt{d+c}};\frac{\sqrt{c}}{\sqrt{d+a}};\frac{\sqrt{d}}{\sqrt{a+b}}\right)\), ta được:

\(\left[a\left(b+c\right)+b\left(d+c\right)+c\left(d+a\right)+d\left(a+b\right)\right]\)\(\left(\frac{a}{b+c}+\frac{b}{d+c}+\frac{c}{a+d}+\frac{d}{a+b}\right)\)\(\ge\left(a+b+c+d\right)^2\)

\(\Leftrightarrow\frac{a}{b+c}+\frac{b}{d+c}+\frac{c}{a+d}+\frac{d}{a+b}\)\(\ge\frac{\left(a+b+c+d\right)^2}{ab+ac+bd+bc+cd+ac+ad+bd}\)(1)

Ta có \(\left(a+b+c+d\right)^2\ge2\left(ab+ac+bc+bd+cd+ac+ad+bd\right)\)

\(\Leftrightarrow\left(a-c\right)^2+\left(b-d\right)^2\ge0\)(luôn đúng)

Do đó: \(\left(a+b+c+d\right)^2\ge2\left(ab+ac+bc+bd+cd+ac+ad+bd\right)\)(2)

Từ (1) và (2) suy ra ĐPCM

Dấu "=" xảy ra khi và chỉ khi a=b=c=d

Khách vãng lai đã xóa
Thanh Tùng DZ
5 tháng 2 2020 lúc 16:36

Áp dụng BĐT : \(\frac{1}{xy}\ge\frac{4}{\left(x+y\right)^2}\)với x,y > 0

Ta có : \(\frac{a}{b+c}+\frac{c}{d+a}=\frac{a^2+ad+bc+c^2}{\left(b+c\right)\left(a+d\right)}\ge\frac{4\left(a^2+ad+bc+c^2\right)}{\left(a+b+c+d\right)^2}\)

Tương tự : \(\frac{b}{c+d}+\frac{d}{a+b}\ge\frac{4\left(b^2+ab+cd+d^2\right)}{\left(a+b+c+d\right)^2}\)

\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\ge\frac{4\left(a^2+b^2+c^2+d^2+ad+bc+ab+cd\right)}{\left(a+b+c+d\right)^2}\)

Cần chứng minh : \(\frac{a^2+b^2+c^2+d^2+ad+bc+ab+cd}{\left(a+b+c+d\right)^2}\ge\frac{1}{2}\)

\(\Leftrightarrow2\left(a^2+b^2+c^2+d^2+ad+bc+ab+cd\right)\ge\left(a+b+c+d\right)^2\)

\(\Leftrightarrow\left(a-c\right)^2+\left(b-d\right)^2\ge0\)

Dấu "=" xảy ra khi a = c ; b = d

Vậy ....

Khách vãng lai đã xóa
Agatsuma Zenitsu
5 tháng 2 2020 lúc 16:40

Ta có: \(\frac{a}{x}+\frac{b}{y}\ge\frac{\left(a+b\right)^2}{xy}\)

Lại có: \(\frac{a}{b+c}+\frac{d}{a+b}\)

\(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\ge\frac{\left(a+b+c+d\right)^2}{ab+bc+bc+bd+ca+cd+da+db}\)

Ta chứng minh: \(\left(a+b+c+d\right)^2\ge2\left(ab+ac+bc+bd+ca+cd+da+db\right)\)

\(\Leftrightarrow\left(a+c\right)^2+2\left(a+c\right)\left(b+d\right)+\left(b+d\right)^2\ge2\left(a+c\right)\left(b+d\right)+4ac+4bd\)

\(\Leftrightarrow\left(a+c\right)^2+\left(b+d\right)^2\ge4ac+4bd\)(đúng)

\(\Leftrightarrow\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\ge2\left(đpcm\right)\)

Dấu " =  "xảy ra \(\Leftrightarrow a=b=c=d\)

Khách vãng lai đã xóa
Làm gì mà căng
Xem chi tiết
Kudo Shinichi
10 tháng 10 2019 lúc 17:36

Áp dụng BĐT Cauchy Schwarz dạng Engel và BĐT AM - GM ta có :

\(M=\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\)

\(=\frac{a^2}{ab+ac}+\frac{b^2}{bc+bd}+\frac{c^2}{cd+ac}+\frac{d^2}{ad+bd}\)

\(\ge\frac{\left(a+b+c+d\right)^2}{ad+bc+cd+ab+2ac+2bd}\)

\(=\frac{2\left(a+b+c+d\right)^2}{\left(2ad+2bc+2cd+2ab+2ac+2bd\right)+2ac+2bd}\)

\(\ge\frac{2\left(a+b+c+d\right)^2}{\left(2ad+2bc+2cd+2ab+2ac+2bd\right)+a^2+b^2+c^2+^2}\)

\(=\frac{2\left(a+b+c+d\right)^2}{\left(a+b+c+d\right)^2}=2\)

Dấu "=" xảy ra khi a = b = c = d

Chúc bạn học tốt !!!

Phạm Băng Băng
Xem chi tiết
Lê Thị Thục Hiền
10 tháng 10 2019 lúc 22:25

Xét M= \(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{a+d}+\frac{d}{a+b}\)

=\(\frac{a\left(a+d\right)+c\left(b+c\right)}{\left(a+d\right)\left(b+c\right)}+\frac{b\left(a+b\right)+d\left(c+d\right)}{\left(a+b\right)\left(c+d\right)}\)

Với x,y>0 có: \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

<=>\(\frac{x+y}{xy}\ge\frac{4}{x+y}\)

<=>\(\frac{1}{xy}\ge\frac{4}{\left(x+y\right)^2}\)(1) .Dấu "=" xảy ra <=>x=y>0

Áp dụng bđt (1) có:

\(\frac{a\left(a+d\right)+c\left(b+c\right)}{\left(a+d\right)\left(b+c\right)}\ge\frac{4\left(a^2+ad+bc+c^2\right)}{\left(a+b+c+d\right)^2}\)

\(\frac{b\left(a+b\right)+d\left(c+d\right)}{\left(c+d\right)\left(a+b\right)}\ge\frac{4\left(ab+b^2+dc+d^2\right)}{\left(a+b+c+d\right)^2}\)

Cộng vế với vế có: \(M\ge\frac{4\left(a^2+ad+bc+c^2+ab+b^2+dc+d^2\right)}{\left(a+b+c+d\right)^2}\)

\(2\left(a^2+b^2+c^2+d^2+ad+bc+ab+cd\right)-\left(a+b+c+d\right)^2\)

=\(a^2+b^2+c^2+d^2-2ac-2db=\left(a-c\right)^2+\left(b-d\right)^2\ge0\)

=>\(2\left(a^2+b^2+c^2+d^2+ad+bc+ab+cd\right)\ge\left(a+b+c+d\right)^2\)

<=>\(\frac{4\left(a^2+b^2+c^2+d^2+ab+bc+cd+ad\right)}{\left(a+b+c+d\right)^2}\ge2\)

hay \(M\ge2\)

Dấu "=" xảy ra <=> a=b=c=d>0

Phạm Băng Băng
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 11 2019 lúc 10:25

1/ Ta có \(a^3+b^3\ge ab\left(a+b\right)\)

Thật vậy, BĐT tương đương:

\(a^3-a^2b+b^3-ab^2\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) (luôn đúng)

\(\Rightarrow a^3+b^3+abc\ge ab\left(a+b\right)+abc=ab\left(a+b+c\right)\)

Dấu "=" xảy ra khi \(a=b\)

2/ \(P=\frac{a^2}{ab+ac}+\frac{b^2}{bc+bd}+\frac{c^2}{cd+ca}+\frac{d^2}{ad+bd}\ge\frac{\left(a+b+c+d\right)^2}{2ac+2bd+ab+bc+cd+ad}\)

\(P\ge\frac{\left(a+c\right)^2+\left(b+d\right)^2+2\left(a+c\right)\left(b+d\right)}{2ac+2bd+ab+bc+cd+ad}\)

\(P\ge\frac{4ac+4bd+2ab+2bc+2cd+2ad}{2ac+2bd+ab+bc+cd+ad}=2\)

Dấu "=" xảy ra khi \(a=b=c=d\)

Khách vãng lai đã xóa