chứng tỏ rằng nếu 1 số nguyên tố có 3 chữ số tận cùng là 104 thi số đó có ít nhất 4 ước số
chứng tỏ rằng một số tự nhiên có 3 chữ số tận cùng là 104 thì có ít nhất 4 ước số
Số có 3 chữ số tận cùng là 104 chia hết cho 8 , vì 104 chia hết cho 8
=>số đó có ước là 2 mũ 3
=> có ít nhất 4 ước là 1 ; 2 ; 4 ; 8
Chứng minh rằng nếu 1 số tự nhiên có 3 chữ số tận cùng là 104 thì số đó có ít nhất 5 ước số.
ta có 3 chữ số cuối là 104\(⋮\)8
mà 8=23vậy số đó có 3+1=4 ước và chính số đó là 5 ước
vậy sô tự nhiên có 3chữ số tận cùng là 104 sẽ có ít nhất 5 ước
chứng tỏ rằng nếu có số tự nhiên có 3 chữ số có tận cùng 104 thì luôn luôn có 4 ước số ?
Số tự nhiên có tận cùng là 104 thì chia hết cho 2 vì là số chẵn
số tự nhiên có tận cùng là 104 thì chia hết cho 4 vì 2 số tận cùng chia hết cho 4
=>Số tự nhiên có tận cùng là 104 luôn có 4 ước là 1 2 4 và chính nó
chứng tỏ rằng [7+1].[7+2] chia hết cho 3
chứng tỏ rằng [3^100+19^990] chia hết cho 2
abcabc có ít nhất 3 ước số nguyên tố
M=1+3^1+3^2+.......+3^30
Tìm chữ số tận cùng của M,từ đó suy ra M có phải là số chính phương không
cmr [7+1].[7+2] chia hết cho 3
=8x9
=72
72 chia hết cho 3
ĐCPCM
Ta có chú ý chẵn cộng chẵn bằng chẵn
lẻ cộng chẵn bằng lẻ
lẻ cộng lẻ là chẵn
mà ta thấy \(3^{100}\) và\(19^{990}\)là lẻ mà lẻ cộng lẻ bằng chẵn
=> mà số chẵn chia hết cho 2
ĐCPCM
3S=3+3^2+3^3+...+3^{31}
3S-S=3^{31}-1
2S=3^{4.7+3}-1
2S=81^7.27-1
2S=\overline{......1}.27-1
2S=\overline{......7}-1=\overline{......6}
S=\overline{........3}
Vậy chữ số tận cùng của S là 3=> S không phải là số chính phương
1) CMR: (7+1)(7+2)\(⋮\)3
\(\left(7+1\right)\left(7+2\right)=8\cdot9⋮3\left(đpcm\right)\)
2) CMR: \(3^{100}+19^{990}⋮2\)
ta có: \(3^{100}\)có chữ số tận cùng là số lẻ
\(19^{990}\)có chữ số tận cùng là số lẻ
mà lẻ + lẻ = chẵn => đpcm
3) abcabc có ít nhất 3 ước số nguyên tố
ta có: abcabc = abc x 1001 = abc x 11 x 7 x 13
Vậy...
4) Cho \(M=1+3^1+3^2+...+3^{30}\)
Tìm chữ số tận cùng của M. Từ đó suy ra M có phải số chính phương không?
ta có: \(M=1+3^1+3^2+...+3^{30}\)(1)
\(\Rightarrow3M=3+3^2+3^3+...+3^{31}\)(2)
(2) - (1) \(\Leftrightarrow3M-M=\left(3+3^2+3^3+...+3^{31}\right)-\left(1+3^1+3^2+...+3^{30}\right)\)
\(\Leftrightarrow2M=3^{31}-1\)
ta có: \(3^{31}=3^{28}\cdot3^3=\left(3^4\right)^7\cdot27=\left(...1\right).27=...7\Rightarrow2M=...7-1=...6\)
\(\Rightarrow\orbr{\begin{cases}M=...3\\M=...8\end{cases}}\)mà số chính phương không có tận cùng là 3, 8
=>đpcm
Học tốt nhé ^3^
Chứng minh rằng một số tự nhiên có 3 chữ số tận cùng là 136 thì có ít nhất 4 ước
Chứng tỏ rằng abcabc là số có ít nhất 3 ước nguyên tố
Ta có abcabc=abc.1001
1001=7.11.13
Vì 7;11;13 là 3 số nguyên tố cùng nhau =>abc.1001 có ít nhất 3 ước số nguyên tố
Vậy abcabc có ít nhất 3 ước số nguyên tố
a. Tìm số TN nhỏ nhất có 4 chữ số giống nhau ,biết rằng số đó có đúng 3 ước đều là số nguyên tố
b DÙNG 3 CHỮ SỐ 1;2;3 HÃY VIẾT CÁC SỐ TN CÓ 3 CHỮ SỐ MÀ CÁC CHỮ SỐ KHÁC NHAU . CHỨNG TỎ RẰNG TẤT CẢ CÁC SỐ ĐÓ ĐỀU LÀ HỢP SỐ
Cho p và p+4 là các số nguyên tố (p>3). chứng tỏ rằng p+8 là hợp số.
Chứng tỏ rằng các số có dạng abcabc( có gạch ngang trên đầu ) chia hết cho ít nhất 3 số nguyên tố.
Mọi người cứ làm từng câu một, vậy tui làm cả 2 câu nhé!
Câu 1:
p là số nguyên tố lớn hơn 3 => p=3k+1 hoặc p=3k+2
Nếu p=3k+2
=>p+4=3k+2+4=3k+6 (loại vì p+4 cũng là số nguyên tố)
=>p=3k+1
=>p+8=3k+1+8=3k+9 là hợp số (đpcm)
Câu 2:
Ta có: abcabc=abc.1001=abc.7.11.13
Vì 7;11;13 là 3 số nguyên tố nên abcabc chia hết cho ít nhất 3 số nguyên tố (đpcm)
Giả sử p là 1 số nguyên tố >3, do p không chia hết cho 3 nên p có dạng 3k + 1 hoặc 3k + 2 nhưng do p +4 là số nguyên tố nên p không thể có dạng 3k + 2 vậy p có dạng 3k +1. Vậy p + 8 = 3k + 9 chia hết cho 3 nên nó là hợp số.
Phần 1 bạn Kun làm rồi. Mình làm tiếp phần 2.
\(\overline{abcabc}=\overline{abc}\cdot1001=7\cdot11\cdot13\cdot\overline{abc}\)
Vậy \(\overline{abcabc}\)chia hết ít nhất cho 3 số nguyên tố là 7;11;13.
Cho p và p+4 là các số nguyên tố (p>3). chứng tỏ rằng p+8 là hợp số.
Chứng tỏ rằng các số có dạng abcabc( có gạch ngang trên đầu ) chia hết cho ít nhất 3 số nguyên tố.