tìm số dư của phép chia 5^70+7^50 chia cho 12
Tìm số dư của phép chia ( 570 + 750 ) cho 12
tìm số dư trong phép chia 570 + 750 cho 12
\(\text{Giải}\)
\(5^{70}+7^{50}=25^{35}+49^{25}\)
\(25\equiv1\left(\text{mod 12}\right);49\equiv1\left(\text{mod 12}\right)\)
\(\Rightarrow5^{70}+7^{50}\equiv\left(1+1\right)\left(\text{mod 12}\right)\equiv2\left(\text{mod 12}\right)\)
\(\Rightarrow\text{5^70+7^50 chia 12 dư 2}\)
ta có : \(5^2\equiv1\)( mod 12 ) \(\Rightarrow\left(5^2\right)^{35}\equiv1\)( mod 12 )
hay \(5^{70}\equiv1\)( mod 12 ) (1)
\(\Rightarrow\left(7^2\right)\equiv1\)( mod 12 ) \(\Rightarrow\left(7^2\right)^{25}\equiv1\)( mod 12 ) hay \(7^{50}\equiv1\)( mod 12 ) ( 2 )
từ ( 1 ) ; ( 2 ) suy ra \(5^{70}+7^{50}\div12\) dư 2
tìm số dư của phép chia :
a ) 32003 cho 3
b ) 570 + 750 cho 12
a)Ta thấy: 3 đồng dư với 0(mod 3)
=>32003 đồng dư với 02003(mod 3)
=>32003 đồng dư với 0(mod 3)
=>32003 chia 3 dư 0
b)Ta thấy: 52=25 đồng dư với 1(mod 12)
=>(52)35 đồng dư với 135(mod 12)
=>570 đồng dư với 1(mod 12)
Lại có: 72=49 đồng dư với 1(mod 12)
=>(72)25 đồng dư với 125(mod 12)
=>750 đồng dư với 1(mod 12)
=>570+750 đồng dư với 1+1(mod 12)
=>570+750 đồng dư với 2(mod 12)
=>570+750 chia 12 dư 2
Tìm số dư trong các phép chia sau :
1) 6^592 chia cho 11
2) 1532^5 -1 chia cho 9
3) 3.5^75 + 4.7^100 chia cho 132
4) 5^70 +7^50 chia cho 12
5) (5^30 +50)^30 chia cho 24
Bài 1: Tìm số dư trong phép chia 570+770chia cho 12
Bài 2: Chứng minh 3012 93-1 chia hết cho 13
[ Tính theo phép đồng dư nha ]
1, Dễ thấy : \(5^2=25\equiv1\left(mod12\right)\) \(7^2=49\equiv1\left(mod12\right)\)
\(\rightarrow\left(5^2\right)^{35}\equiv1^{35}\left(mod12\right)\) \(\rightarrow\left(7^2\right)^{35}\equiv1^{35}\left(mod12\right)\)
\(\rightarrow5^{70}\equiv1\left(mod12\right)\) \(\rightarrow7^{70}\equiv1\left(mod12\right)\)
Vậy \(5^{70}:12\left(dư1\right)\) và \(7^{70}:12\left(dư1\right)\)Vậy \(\left(5^{70}+7^{70}\right):12\left(dư2\right)\)
Bài 2 : Ta có : 3012 = 13.231 + 9
Do đó: 3012 đồng dư với 9 (mod13)
=> \(3012^3\)đồng dư với \(9^3\left(mod13\right)\). Mà \(9^3=729\)đồng dư với 1 (mod13)
=> \(3012^3\)đồng dư với 1 (mod13)
Hay \(3012^{93}\)đồng dư với 1 (mod13)
=> \(3012^{93}-1\)đồng dư với 0 (mod13)
Hay \(3012^{93}-1⋮13\left(đpcm\right)\)
Bài 1 : Chứng minh rằng :2222^5555 + 5555^2222 chia hết cho 7
Bài 2 :Tìm dư phép chia 5^70 + 7^50 cho 12
Giiusp mk vs nha! Thanks các bn nhiều
Tìm số dư trong phép chia:
a. 570 + 750 chia cho 12
b. 776776 + 777777 + 778778 chia cho 3 và 5
a,\(5^{70}+7^{50}=25^{35}+49^{50}\)
N/x: 25 và 49 chia 12 đều dư 1 -> tổng chia 12 dư 2
b.\(776^{776}+777^{777}+778^{778}\equiv\left(-1\right)^{776}+0+1^{776}\equiv2\)(mod 3)
-> chia 3 dư 2
\(776^{776}+777^{777}+778^{778}\equiv1+2^{777}+\left(-2\right)^{778}\equiv1+4^{388}\cdot2+4^{389}\equiv1+2\cdot\left(-1\right)^{388}+\left(-1\right)^{389}\equiv1+2-1\equiv2\)
->chia 5 dư 2
Tìm số dư trong phép chia ( 570 +750 ):17 theo cách làm số đồng dư
Tìm số dư trong phép chia
570+770 cho 12
Ta có :
\(5^{70}=\left(5^2\right)^{35}=25^{35}=\left(12.2+1\right)^{35}\equiv1\left(mod12\right)\)
\(7^{70}=\left(7^2\right)^{35}=49^{35}=\left(12.4+1\right)^{35}\equiv1\left(mod12\right)\)
\(\Rightarrow5^{70}+7^{50}\equiv2\left(mod12\right)\) hay \(5^{70}+7^{50}\) chia 12 dư 2