a,tìm GTNN của bt
A=x^2+10x-37
b,tìm GTLN của bt
B=6x-x^2+3
Tìm GTLN/GTNN của :
A = x2 - x + 3
B = 2x2 + 10x - 2
C = 19 - 6x - 9x2
a) Ta có : \(A=x^2-x+3=\left(x-\frac{1}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow x=\frac{1}{2}\)
Vạy GTNN của \(A=\frac{11}{4}\) tại \(x=\frac{1}{2}\)
b) \(B=2x^2+10x-2\)
\(=2.\left(x^2+5x-1\right)\)
\(=2.\left[\left(x^2+2\cdot x\cdot\frac{5}{2}+\frac{25}{4}\right)-\frac{29}{4}\right]\)
\(=2.\left(x+\frac{5}{2}\right)^2-\frac{29}{2}\ge-\frac{29}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=-\frac{5}{2}\)
Vạy GTNN của \(B=-\frac{29}{2}\) tại \(x=-\frac{5}{2}\)
c) \(C=19-6x-9x^2\)
\(=-\left(9x^2+6x\right)+19\)
\(=-\left[\left(3x\right)^2+2.3x.1+1\right]+20\)
\(=-\left(3x+1\right)^2+20\le20\)
Dấu "=" xảy ra \(\Leftrightarrow x=-\frac{1}{3}\)
Vậy GTLN của \(C=20\) khi \(x=-\frac{1}{3}\)
Tìm GTLN/GTNN của :
A = x2 - x + 3
B = 2x2 + 10x - 2
C = 19 - 6x - 9x2
Bạn tham khảo tại linh này : Câu hỏi của Zero Two - Toán lớp 8 - Học toán với OnlineMath
Tìm GTLN/GTNN của :
A = x2 - x + 3
B = 2x2 + 10x - 2
C = 19 - 6x - 9x2
Đăng một lần thôi bạn :v Tụi mình thấy và làm cho bạn mà :))
A = x2 - x + 3
= ( x2 - x + 1/4 ) + 11/4
= ( x - 1/2 )2 + 11/4
( x - 1/2 )2 ≥ 0 ∀ x => ( x - 1/2 )2 + 11/4 ≥ 11/4
Đẳng thức xảy ra <=> x - 1/2 = 0 => x = 1/2
=> MinA = 11/4 <=> x = 1/2
B = 2x2 + 10x - 2
= 2( x2 + 5x + 25/4 ) - 29/2
= 2( x + 5/2 )2 - 29/2
2( x + 5/2 )2 ≥ 0 ∀ x => 2( x + 5/2 )2 - 29/2 ≥ -29/2
Đẳng thức xảy ra <=> x + 5/2 = 0 => x = -5/2
=> MinB = -29/2 <=> x = -5/2
C = 19 - 6x - 9x2
= -( 9x2 + 6x + 1 ) + 20
= -( 3x + 1 )2 + 20
-( 3x + 1 )2 ≤ 0 ∀ x => -( 3x + 1 )2 + 20 ≤ 20
Đẳng thức xảy ra <=> 3x + 1 = 0 => x = -1/3
=> MaxC = 20 <=> x = -1/3
Tìm GTLN/GTNN của :
A = x2 - x + 3
B = 2x2 + 10x - 2
C = 19 - 6x - 9x2
Bạn xem tại link này nhé : Câu hỏi của Zero Two - Toán lớp 8 - Học toán với OnlineMath
Tìm GTLN/GTNN của :
A = x2 - x + 3
B = 2x2 + 10x - 2
C = 19 - 6x - 9x2
A = x2 - x + 3 = (x2 - x + 1/4) + 11/4 = (x - 1/2)2 + 11/4
Vì \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\)
Dấu "=" xảy ra <=> x - 1/2 = 0
=> x = 1/2
Vậy MIN A = 11/4 <=> x = 1/4
b) B = 2x2 + 10x - 2 = (2x2 + 10x + 25/2) - 29/2 = 2(x + 2,5)2 - 29/2 \(\ge-\frac{29}{2}\)
Dấu "=" xảy ra <=> x + 2,5 = 0
=> x = -2,5
Vậy MIN B = -29/2 <=> x = -2,5
c) C = 19 - 6x2 - 9x2 = -(9x2 + 6x + 1) + 20 = -(3x + 1)2 + 20 \(\le\)20
Dấu "=" xảy ra <=> 3x + 1 = 0
=> x = -1/3
Vậy Max C = 20 <=> x = -1/3
Tìm GTLN - GTNN của các biểu thức ?
* bài 1: Tìm GTNN:
a) A= (x - 5)² + (x² - 10x)² - 24
b) B= (x - 7)² + (x + 5)² - 3
c) C= 5x² - 6x +1
d) D= 16x^4 + 8x² - 9
e) A= (x + 1)(x - 2)(x - 3)(x - 6)
f) B= (x - 2)(x - 4)(x² - 6x + 6)
g) C= x^4 - 8x³ + 24x² - 8x + 25
h) D= x^4 + 2x³ + 2x² + 2x - 2
i) A= x² + 4xy + 4y² - 6x – 12y +4
k) B= 10x² + 6xy + 9y² - 12x +15
l) C= 5x² - 4xy + 2y² - 8x – 16y +83
m) A= (x - 5)^4 + (x - 7)^4 – 10(x - 5)²(x - 7)² + 9
* Bài 2: Tìm GTLN:
a) M= -7x² + 4x -12
b) N= -16x² - 3x +14
c) M= -x^4 + 4x³ - 7x² + 12x -5
d) N= -(x² + x – 2) (x² +9x+18) +27
* Bài 3:
1) Cho x - 3y = 1. Tìm GTNN của M= x² + 4y²
2) Cho 4x - y = 5. Tìm GTNN của 3x²+2y²
3) Cho a + 2b = 2. Tìm GTNN của a³ + 8b³
* Bài 4: Tìm GTLN và GTNN của các biểu thức:
1) A = (3 - 4x)/(x² + 1)
2) B= (8x + 3)/(4x² + 1)
3) C= (2x+1)/(x²+2)
tìm gtnn hoặc gtln
a, A=-6x+x^2+11
b,B=-1+2x^x+10x
a) Ta có : \(A=-6x+x^2+11\)
\(\Rightarrow A=\left(x^2-6x+9\right)+2\)
\(\Rightarrow A=\left(x-3\right)^2+2\ge2\)
Dấu "=" xảy ra \(\Leftrightarrow x-3=0\Leftrightarrow x=3\)
Vậy \(minA=2\Leftrightarrow x=3\)
b) \(B=-1+2x^x+10x\)
\(\Rightarrow\)Tớ đang thắc mắc cái chỗ 2xx :)))
tìm GTNN và GTLN của bt A=|x+1|+2|x+2|-3|x+3|