tim x,y,z biet y+z+1=x+z+2/y=x+y-3/2=1/x+y+z
Tim x , y , z biet: x /y+z+1 = y/ z+x+2 = z/ x+y−3 =x+y+z Cach lam ho minh voi
tim x,y,z biet; x/z+y+1=y/x+z+1=x+y-2=x+y+z
(x)/(z+y+1)=(y)/(x+z+1)=(z)/(x+y-2)=x+y+...
Khi đó 1/2=x+y+z=x/(3/2-x)=y/(3/2-y)=z/(-z-3/2) suy ra x=y=1/2,z=-1/2.
dùng tính chất tỉ lệ thức: a/b = c/d = e/f = (a+b+c)/(b+d+f) (có b+d+f # 0)
* trước tiên ta xét trường hợp x+y+z = 0 có
x/(y+z+1) = y/(x+z+1) = z/(x+y-2) = 0 => x = y = z = 0
* xét x+y+z = 0, tính chất tỉ lệ thức:
x+y+z = x/(y+z+1) = y/(x+z+1) = z/(x+y-2) = (x+y+z)/(2x+2y+2z) = 1/2
=> x+y+z = 1/2 và:
+ 2x = y+z+1 = 1/2 - x + 1 => x = 1/2
+ 2y = x+z+1 = 1/2 - y + 1 => y = 1/2
+ z = 1/2 - (x+y) = 1/2 - 1 = -1/2
Vậy có căp (x,y,z) thỏa mãn: (0,0,0) và (1/2,1/2,-1/2)
Tim x , y , z biet:
\(\frac{x}{y+z+1}=\frac{y}{z+x+2}=\frac{z}{x+y+3}=x+y+z\)
tim x;y;z biet x+y+z =1+2+3
vàx/1=y/2=z/3
\(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\)và z + y + x = 1 + 2 + 3 = 6
Theo đề ra ta có : \(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}=\frac{x+y+z}{1+2+3}=\frac{6}{6}=1\)( áp dụng tính chất dãy tỉ số bằng nhau )
Nếu \(\frac{x}{1}=1\Rightarrow x=1.1=1\)
\(\frac{y}{2}=1\Rightarrow y=2.1=2\)
\(\frac{z}{3}=1\Rightarrow x=3.1=3\)
Áp dụng ...
=> x/1 = y/2 = z/3 = x+y+z/ 1+2+3 = 1+2+3/1+2+3 = 1
=> x/1 = 1 -> x =1
y/2 = 1 -> y=2
z/3 = 1=> z=3
Vậy x= 1, y=2, z=3
tim cac so huu ti x,y,z biet x+y=1/2 y+z=1/3 z+y=1/4
tim x,y,z biet: \(\frac{x+z+2}{y}=\frac{y+z+1}{x}=x+y+3=\frac{1}{x+y+z}\)
Tim x,y,z biet
X+y+2005/z=y+z-2006/x=x+z+1/y=2/x+y+z
Từ đề bài ta có \(\frac{x+y+y+z+x+z}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\) Bn tự trình bày khúc đầu nha
Mà ta có \(\frac{2}{x+y+z}=2\) nên \(x+y+z=1\)
Ta có \(x+y=1-z\)và \(y+z=1-x\)và \(x+z=1-y\)
Thay vào ta có
\(\frac{1-z+2005}{z}=\frac{1-x-2006}{x}=\frac{1-y+1}{y}\)
Ta có \(\frac{z-2004}{z}=\frac{\left(-x\right)+\left(-2005\right)}{x}=\frac{y-2}{y}\)
Suy ra \(\frac{z-2004}{z}=2\Rightarrow z-2004=2z\Rightarrow z-2z=2004\Rightarrow-z=2004\Rightarrow z=-2004\)
Cứ làm thế mà bn tìm ra x,y,z nha
k cho mik <3
Tim ba so x, y, z biet \(\frac{y+z+1}{x}=\frac{x+ z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{y+z+1+x+z+2+x+y-3}{x+y+z}=2\)
Suy ra
\(x+y+z=\frac{1}{2}\)(1)
\(y+z+1=2x\)(2)
\(x+z+2=2y\)(3)
\(x+y-3=2z\)(4)
(2)-(1) ta có
\(1-x=2x-\frac{1}{2}\Rightarrow3x=\frac{3}{2}\Rightarrow x=\frac{1}{2}\)
\(x+y+z=\frac{1}{2}\Rightarrow y+z=\frac{1}{2}-x\Leftrightarrow y+z=\frac{1}{2}-\frac{1}{2}=0\)
\(y=-z\)
\(x+z+2=\frac{1}{2}+2-y==\frac{5}{2}-y\)
\(\frac{\frac{5}{2}-y}{y}=\frac{5}{2y}-1=2\Leftrightarrow\frac{5}{2y}=3\Leftrightarrow y=\frac{5}{6}\)
\(z=-\frac{5}{6}\)
biet rang x/y+z+1=y/x+z+1=z/x+y-2=x+y+z
tim x. y.z
* trước tiên ta xét trường hợp x+y+z = 0 có
x/(y+z+1) = y/(x+z+1) = z/(x+y-2) = 0 => x = y = z = 0
* xét x+y+z = 0, tính chất tỉ lệ thức:
x+y+z = x/(y+z+1) = y/(x+z+1) = z/(x+y-2) = (x+y+z)/(2x+2y+2z) = 1/2
=> x+y+z = 1/2 và:
+ 2x = y+z+1 = 1/2 - x + 1 => x = 1/2
+ 2y = x+z+1 = 1/2 - y + 1 => y = 1/2
+ z = 1/2 - (x+y) = 1/2 - 1 = -1/2
Vậy có căp (x,y,z) thỏa mãn: (0,0,0) và (1/2,1/2,-1/2)