Cho a,b thuộc Z, a>b, b>0. Chứng minh rằng: \(\frac{a}{b}< \frac{a+2009}{b+2009}\)
cho a>b>0. chứng minh rằng \(\frac{a^{2009}-b^{2009}}{a^{2009}+b^{2009}}>\frac{a^{2008}-b^{2008}}{a^{2008}+b^{2008}}\)
cho \(\frac{a+c}{b+d}=\frac{a-c}{b-d}\) (với a,b,c,d khác 0 và b khác + d)
chứng minh rằng : \(\frac{a^{2009}-c^{2009}}{b^{2009}-d^{2009}}=\left(\frac{a}{b}\right)^{2009}\)
Vì \(\frac{a+c}{b+d}=\frac{a-c}{b-d}\)
\(\Rightarrow\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\frac{a^{2009}}{b^{2009}}=\frac{c^{2009}}{d^{2009}}=\left(\frac{a}{b}\right)^{2009}=\frac{a^{2009}-c^{2009}}{b^{2009}-d^{2009}}\)( áp dụng tc của dãy tỉ số bằng nhau )
Vậy ...
cho a , b, c khác 0 và a+b+c khác 0 thoả mãn điều kiện \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
chứng minh rằng trong 3 số a,b,c có 2 số đối nhau từ đó suy ra 1/(a^2009) + 1/(b^2009) + 1/(c^2009) = 1/(a^2009+b^2009+c^2009)
cho \(\frac{q+c}{b+d}\frac{a-c}{b-d}\) ( với a,b,c khác 0 và b khác cộng trừ d)
Chứng minh rằng: \(\frac{a^{2009}-c^{2009}}{b^{2009}-d^{2009}}=\left(\frac{a}{b}\right)^{2009}\)
1. cho a;b thuộc Z; a<b ; b>0. Chứng minh rằng a/b < a+2009/b+2009
2. cho a;b;c;d;e;g thuộc Z biết b;d;g>0 và ad-bc=2009 và cg-de=2009
a, so sánh a/b ; c/d; e/g
b, so sánh c/d với a+e/b+g
3. Cho a;b;c;d thuộc Z sao cho a>b>c>d>0. nếu 0<a1<a2<......<a9 thì \(\frac{a_1+a_2+a_3+.......+a_9}{a_3+a_6+a_9}\)< 3
1. cho a;b thuộc Z; a<b ; b>0. Chứng minh rằng a/b < a+2009/b+2009
2. cho a;b;c;d;e;g thuộc Z biết b;d;g>0 và ad-bc=2009 và cg-de=2009
a, so sánh a/b ; c/d; e/g
b, so sánh c/d với a+e/b+g
3. Cho a;b;c;d thuộc Z sao cho a>b>c>d>0. nếu 0<a1<a2<......<a9 thì \(\frac{a_1+a_2+a_3+.......+a_9}{a_3+a_6+a_9}\)< 3
Chứng minh rằng nếu a>b>0 thì \(\frac{a^{2009}-b^{2009}}{a^{2009}+b^{2009}}>\frac{a^{2008}-b^{2008}}{a^{2008}+b^{2008}}\)
cho a,b thuôc z,a>b>0
chứng minh rằng a/b<a+2009/b+2009
Cho \(a,b,c\ne0\) và \(a+b+c\ne0\) thỏa mãn điều kiện \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
Chứng minh rằng trong 3 số a, b, c có hai số đối nhau. Từ đó suy ra rằng: \(\frac{1}{a^{2009}}+\frac{1}{b^{2009}}+\frac{1}{c^{2009}}=\frac{1}{a^{2009}+b^{2009}+c^{2009}}\)
T>a có : \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
=>\(\frac{ab+bc+ca}{abc}=\frac{1}{a+b+c}\)
=> \(\left(ab+bc+ca\right)\left(a+b+c\right)=abc\)
=> \(ab\left(a+b+c\right)+bc\left(a+b+c\right)+ca\left(a+b+c\right)=abc\)
=> \(a^2b+ab^2+abc+abc+b^2c+bc^2+ca^2+abc+ac^2=abc\)
=> \(a^2b+ab^2+b^2c+bc^2+ca^2+ac^2+2abc=0\)
=> \(\left(a^2b+2abc+bc^2\right)+\left(ab^2+2abc+ac^2\right)+\left(b^2c-2abc+ca^2\right)=0\)
=> \(b\left(a+c\right)^2+a\left(b+c\right)^2+c\left(a-b\right)^2=0\)
=> \(\hept{\begin{cases}a+c=0\\b+c=0\\a-b=0\end{cases}\Rightarrow\hept{\begin{cases}a=-c\\b=-c\\a=b\end{cases}}}\)
=> trong 3 số a,b,c có 2 số đối nhau ( đpcm)
Thay a=-c ,b = -c vào \(\frac{1}{a^{2019}}+\frac{1}{b^{2019}}+\frac{1}{c^{2019}}=\frac{1}{\left(-c\right)^{2019}}+\frac{1}{\left(-c\right)^{2019}}+\frac{1}{c^{2019}}\)
\(=-\frac{1}{c^{2019}}\)(1)
\(\frac{1}{a^{2019}+b^{2019}+c^{2019}}=\frac{1}{\left(-c\right)^{2019}+\left(-c\right)^{2019}+c^{2019}}=-\frac{1}{c^{2019}}\) (2)
Từ (1),(2) => \(\frac{1}{a^{2019}}+\frac{1}{b^{2019}}+\frac{1}{c^{2019}}=\frac{1}{a^{2019}+b^{2019}+c^{2019}}\) (đpcm)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\frac{a+b}{ab}+\frac{a+b}{c\left(a+b+c\right)}=0\)
\(\Leftrightarrow\left(a+b\right)\left[ab+c\left(a+b+c\right)\right]=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(\Rightarrow a=-b\left(h\right)b=-c\left(h\right)c=-a\)
Thay vào tính nốt