chứng minh rằng ko tồn tại 1 số tự nhiên khi chia hết cho 21 dư 7 khi chia 84 thì dư3
chứng minh rằng ko tồn tại 1 số tự nhiên khi chia 21 dư 7 , chia 84 dư3
Chào nha, letrunghieu :
Gọi số cần tìm là x, thương khi chia a cho 21,84 lần lượt là a,b ta có:
x = 21a+7 ; x=84b+2
=> x = 7(3a+1) hay x chia hết cho 7.
Mặt khác ta có: 84b chia hết cho 7 nhưng 2 lại không chia hết cho 7 nên 84b+2 không chia hết cho 7.
=> Không tồn tại số tự nhiên x vừa chia hết cho 7 vừa không chia hết cho 7
chứng minh rằng ko tồn tại 1 số tự nhiên khi chia 21 dư 7 , chia 84 dư3
Giả sử tồn tại số tự nhiên a thì số tự nhiên đó có dạng \(21k+7\) và \(84t+3\) (k,t \(\in\) N)
Ta có : a = 21k + 7
và a = 84t + 3
=> 21k + 7 = 84t + 3
=> 21k - 84t = -4
=> 21 ( k - 4t ) = -4
=> k - 4t = \(-\frac{4}{21}\)
Mâu thuẫn vì tổng các số tự nhiên là số tự nhiên.
Nên điều giả sử là sai
Vậy không thể tồn tại một số chia cho 21 dư 7 mà chia cho 84 lại dư 3 (đpcm).
Dùng phương pháp chứng minh phải chứng.
Chứng minh : Không tồn tại một số tự nhiên khi chia cho 21 thì dư 7 và khi chia cho 84 lại dư 3
gọi thương khi chia cho 21 là a,thương khi chia cho 84 là b
21a+7=7(3a+1) chia hết cho 7
84b+3 chia 7 dư 3
vậy không có số tự nhiên khi chia 21 dư 7,chia 84 chia 3
http://olm.vn/hoi-dap/question/130933.html
Chứng tỏ rằng ko thể tồn tại 1 số tự nhiên mà chia 21 dư 7 và chia 84 dư 3
hình như là 28:21 dư 7. 87:84 dư 3 mà
CM rằng không tồn tại 1 số tự nhiên khi chia cho 21 dư 7, chia cho 84 dư 3 ?
gọi thương khi chia cho 21 là a,thương khi chia cho 84 là b
21a+7=7(3a+1) chia hết cho 7
84b+3 chia 7 dư 3
vậy không có số tự nhiên khi chia 21 dư 7,chia 84 chia 3
CMR :Ko thể tồn tại 1 số tự nhiên chia 21 dư 7 và chia 84 dư 3
Giả sử tồn tại số tự nhiên a thì số tự nhiên đó có dạng\(21k+7và84t+3\left(kt\in N\right)\)
Ta có : a = 21k + 7
và a = 84t + 3
=> 21k + 7 = 84t + 3
=> 21k - 84t = -4
=> 21 ( k - 4t ) = -4
=> k - 4t =\(-\frac{4}{21}\)
Mâu thuẫn vì tổng các số tự nhiên là số tự nhiên.
Nên điều giả sử là sai
Vậy không thể tồn tại một số chia cho 21 dư 7 mà chia cho 84 lại dư 3 (đpcm).
Chứng minh rằng trong 8 số tự nhiên bất kì khi chia cho 15 có số dư lẻ luôn tồn tại hai số có hiệu chia hết cho 15
Theo đề bài các số dư ={1;3;5;7}
=> có ít nhất 2 số khi chia cho 15 có cùng số dư ta gọi 2 số đó là là a và b
\(\Rightarrow a\equiv b\) (mod 15) \(\Rightarrow a-b⋮15\)
Câu 1 : Khi chia hai số tự nhiên a và b cho 3 thì cùng có số dư là r. Chứng minh rằng (a - b) chia hết cho 3.
Câu 2 : Cho hai số tự nhiên a và b. Khi chia a,b cho cùng số 7 thì có số dư là 5. Chứng minh rằng (a - b) chia hết cho 7.
Câu 3 : Cho hai số tự nhiên a và b. Khi chia a,b cho cùng số 2 thì có số dư là 1. Chứng minh rằng (a - b) chia hết cho 2
"Các bạn có thể giải 1 trong 3 câu hoặc giải tất cả tùy các bạn !!! Ai nhanh mk tik cho !!"
gọi a=3p+r
b=3q+r
xét a-b= (3p+r)-(3q+r)
=3p + r - 3q - r
=3p+3q =3.(p+q) chia hết cho 3
các câu sau làm tương tự
`A = 1 + 2 + 2^2 + 2^3 + ... + 2^41` $\\$
`2A = 2 + 2^2 + 2^3 + ... + 2^42`$\\$
`2A - A = (2 + 2^2 + 2^3 + ... + 2^42) - (1 + 2 + 2^2 + 2^3 + ... + 2^41)` $\\$
`2A - A = 2 + 2^2 + 2^3 + ... + 2^42 - 1 - 2 - 2^2 - 2^3 - ... - 2^41`$\\$
`2A - A = (2 - 1 - 2) + (2^2 - 2^2) + (2^3 - 2^3) + ... (2^41 - 2^41) + 2^42`$\\$
`2A - A = - 1 + 2^42`$\\$
hay `A = -1 + 2^42`$\\$
1. cho 2 số tự nhiên a ,b . Khi chia a,b cho 2 thì có số dư là 1 . Chứng minh rằng : ( a - b ) chia hết cho 2
2. khi chia 1 số tự nhiên cho 148 ta đc số dư là 111 . Chứng minh rằng a chia hết cho 37
1.
a chia hết cho 2 dư 1
=> a có dạng là 2n+1
b chia hết cho 2 dư 1
=> b có dang là 2m+1
=>a-b=2n+1-2m-1=2n-2m=2 (n-m) luôn chia hết cho 2
1. Ta có: a:2(dư 1) ⇒a+1⋮2
b:2(dư 1) ⇒b+1⋮2
(a+1)-(b+1)⋮2
a+1-b-1⋮2
(a-b)+(1-1)⋮2
a-b⋮2(đpcm)