Tìm GTNN:(2x+3)^2+|5+3|+5=A
tìm GTNN của : A= 2x^2 + 3 / 2x^2 + 5
\(A=\frac{2x^2+3}{2x^2+5}=1-\frac{2}{2x^2+5}\)
vì A nhỏ nhất=>\(\frac{2}{2x^2+5}\)lớn nhất
=>2x2+5 bé nhất
=>\(2x^2+5\ge2.0^2+5=5\)
=>2x2+5 bé nhất =5
dấu "=" xảy ra khi x=0
\(\Rightarrow Min_A=\frac{2.0^2+3}{2.0^2+5}=\frac{3}{5}\)
vậy \(Min_A=\frac{3}{5}\)
Tìm GTLN(GTNN) của biểu thức:
A = 2(2x+3)^2+5
A = 2(2x + 3)2 + 5
vì (2x + 3)2 ≥ 0 ∀ x ⇒ 2(2x +3)2 + 5 ≥ 5
A(min) = 5 ⇒ x = - \(\dfrac{3}{2}\)
A=2|x-3|+2x+5 tìm GTNN
Tìm gtnn của A=√2x-5 -3/1+√2x-5
A = /2*-5-3/1+/2*-5
Nhãna Cho x + y = 5 tìm GTNN của
A = |x+1| + |y-2|
b Cho x - y = 2 Tìm GTNN của
B = |2x+1| + |2y+1|
c Cho 2x+y = 3 Tìm GTNN của
C = |2x+3| + |y+2| +2
GIÚP MÌNH NHA MAI NỘP RỒI!!!!!!!!!!
a) Ta có : \(A=\left|x+1\right|+\left|y-2\right|\)
\(\ge\left|x+1+y-2\right|\)
\(=\left|x+y-1\right|=\left|5-1\right|=\left|4\right|=4\)
Dấu "=" xảy ra <=> (x + 1)(y - 2) \(\ge\)0
Vậy Min A = 4 <=> (x + 1)(y - 2) \(\ge\)0
a) Tìm GTNN của P = x^2 -2x+3
b) Tìm GTLN của M = -x^2 - 2x + 5
hông biết mới học lớp 6 làm seo biết đc toán lớp 8 tự nghĩ đi nha
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
a, P = x2- 2x + 3
P= ( x2 -2x +1) +2
= ( x-1)2 +2
ta có : ( x -1)2 \(\ge0\forall x\)=> (x-1)2 +2 \(\ge0+2\)=> P\(\ge\)2
dấu = xảy ra <=> ( x-1)2=0
=> x-1=0 => x=1
vậy GTNN của P=2 tại x=1
b, M= -( x2-2x+5)
M= - [( x2 -2x +1) +4]
= -( x-1)2-4
ta có: -( x-1)2 \(\le0\forall x\) => -( x-1)2 -4 \(\le0-4\) => M \(\le-4\)
dấu = xảy ra <=> -( x-1)2 =0
=> ( x-1 )20 => x-1 =0
=> x=1
vậy GTLN của M = -4 tại x =1
tìm GTNN của A = |3-2x|+|5-2x|+3
Áp dụng BĐT: |a| + |b| \(\ge\) |a + b| . Dấu "=" xảy ra khi a.b \(\ge\) 0
Ta có A = |3 -2x| + |5 - 2x| + 3 = |3 - 2x| + |2x - 5| + 3 \(\ge\) |3 - 2x + 2x - 5| + 3 = 2 + 3 = 5
Dấu "=" xảy ra khi (3 - 2x).(2x - 5) \(\ge\) 0 hay (2x - 3). (2x - 5) \(\le\) 0
Vì 2x - 3 > 2x - 5 nên 2x - 3 \(\ge\) 0 và 2x - 5 \(\le\) 0
=> x \(\le\) 5/2 và x \(\ge\) 3/2 => 3/2 \(\le\) x \(\le\) 5/2
Vậy Min A = 5 khi 3/2 \(\le\) x \(\le\) 5/2
ta có
|3-2x|+|5-2x|+3=|2x-3|+|5-2x|+3\(\ge\)|2x-3+5-2x|+3=2+3=5
Vậy GTNN của |3-2x|+|5-2x|+3 là 5 tại:
2x-3\(\ge\)0 và 5-2x\(\ge\)0
=>x\(\ge\)3/2 và x\(\le\)5/2
=>3/2\(\le\)x\(\le\)5/2
a) Tìm GTNN của biểu thức A = x2 - 2x +5
b) Tìm GTNN của biểu thức B = 2x2 - 6x
c) Tìm GTNN của biểu thức C = 4x - x2 = 3
a) x2 - 2x + 5 = (x - 1)2 + 4 >= 4
Min là 4 khi x = 1
Bài 1: Tìm x: (2x-6)^3 + (5-x)^3 + (1-x)^3 = 0 Bài 2: Tìm GTNN : A= x^2 -2x -4 B= x^2 -x +5 C= 4x^2 +2x -9 D= 2x^2 -4x +7
Bài 1: Tìm x: (2x-6)^3 + (5-x)^3 + (1-x)^3 = 0
Bài 2: Tìm GTNN :
A= x^2 -2x -4
B= x^2 -x +5
C= 4x^2 +2x -9
D= 2x^2 -4x +7
Giúp tớ với, tớ đang cần gấp