Tìm số tự nhiên x,y biết \(3\left(x+y\right)=xy\)
Tìm số tự nhiên x,y biết : \(\left(x-3\right).\left(xy+1\right)=3\)
x - 3 | -3 | -1 | 1 | 3 |
x | 0 | 2 | 4 | 6 |
xy + 1 | -1 | -3 | 3 | 1 |
+) Với x = 0 thì: xy + 1 = 0y + 1 = 1 (khác -1, loại)
+) Với x = 2 thì: xy + 1 = 2y + 1 = -3 => 2y = -4 => y = -2 (loại)
+) Với x = 4 thì: xy + 1 = 4y + 1 = 3 => 4y = 2 => y = 1/2 (loại)
+) Với x = 6 thì: xy + 1 = 6y + 1 = 1 => 6y = 0 => y = 0
Vậy x = 6; y = 0.
Tìm số tự nhiên x, y, biết:
\(\left(x+5\right)\left(y-3\right)=15\)
\(\Rightarrow\left(x+5\right)\left(y-3\right)=1\cdot15=3\cdot5\)
Ta có
x+5 | 1 | 15 | 3 | 5 |
y-3 | 15 | 1 | 5 | 3 |
x | -4(ktm) | 10 | -2(ktm) | 0 |
y | 18 | 4 | 8 | 6 |
Vậy \(\left(x;y\right)=\left\{\left(10;4\right);\left(0;6\right)\right\}\)
Tìm các số tự nhiên x,y biết :
\(x.\left(y-3\right)=8\)
tìm nghiệm là số tự nhiên
a) \(3^x+112=y^2\)
b) \(\left(x^2+1\right)\left(y^2+1\right)+4xy+2\left(x+y\right)\left(1+xy\right)=25\)
Tìm số tự nhiên có hai chữ số dạng \(\overline{xy}\left(x,y\in N,0< x\le9,0\le y\le9\right)\) để \(\dfrac{\overline{xy}}{x+y}\) nhận giá trị nhỏ nhất
\(\overline{xy}=10.x+y\) Khi đó \(\dfrac{\overline{xy}}{x+y}=\dfrac{10x+y}{x+y}\)
Mặt khác \(\dfrac{10x+y}{x+y}=\dfrac{100x+10y}{10\left(x+y\right)}=\dfrac{19\left(x+y\right)+81x-9y}{10\left(x+y\right)}=\dfrac{19}{10}+\dfrac{9\left(9x-y\right)}{10\left(x+y\right)}\ge\dfrac{19}{10}\)
Do đó, \(\dfrac{\overline{xy}}{x+y}\) nhận giá trị nhỏ nhất bằng \(\dfrac{19}{10}\) khi \(9x-y=0\) hay \(x=1,y=9\)
Vậy số cần tìm là 19
tìm các cặp số tự nhiên (x;y) thỏa mãn \(8\left(xy\right)^2+8y^4-8x^2\le x\left(63y^2-x^2\right)\)
tìm các số tự nhiên x,y biết rằng:\(\left(2^x+1\right).\left(2^x+2\right)\left(2^x+3\right)\left(2^x+4\right)-5^y=11879\)
do y>x>0 => \(5^y>5\Rightarrow5^y⋮5\)
Mặt khác, \(2^x,2^x+1,2^x+2,2^x+3,2^x+4\)là 5 số tự nhiên liên tiếp và \(2^x\)không tận cùng bằng 0
=> \(2^x\)+1 hoặc \(2^x\)+3 chia hết cho 5
=> VT \(⋮\)5
Mà 11879 không chia hết cho 5
=> không tồn tại x,y thỏa mãn
Tìm các số tự nhiên x,y biết rằng\(\left(2^x+1\right)\left(2^x+2\right)\left(2^x+3\right)\left(2^x+4\right)-5^y=11879\)
Ta có
\(\left(2^x+1\right)\left(2^x+2\right)\left(2^x+3\right)\left(2^x+4\right)-5^y=11879\)
\(\Leftrightarrow\left(2^{2x}+5\times2^x+4\right)\left(2^{2x}+5\times2^x+6\right)=11879+5^y\)
\(\Leftrightarrow\left(2^{2x}+5\times2^x+5\right)^2=11880+5^y\)
Với y = 0 thì
\(2^{2x}+5\times2^x+5=109\)
\(\Leftrightarrow2^x=8\)
\(\Leftrightarrow x=3\)
Với \(y\ge1\)thì vế trái không chia hết cho 5 còn vế phải chia hết cho 5 nên không tồn tại (x, y) thỏa cái đó
Vậy có duy nhất 1 cặp nghiệm tự nhiên là (x, y) = (3, 0)
a,cho các số x,y,z khác 0 thoả mãn
\(x-2y+\frac{z}{y}=z-2x+\frac{y}{x}=x-2z-\frac{y}{z}\).Tính giá trị biểu thức A=\(\left(1+\frac{y}{x}\right)\times\left(1+\frac{y}{x}\right)=\left(1+\frac{x}{z}\right)+2020\)
b, tìm các số tự nhiên x,y thoả mãn xy+4x=35+5y
c, tìm các số tự nhiên x,y thoả mãn 2^/x/+y^2+y=2x+1