Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thịnh Bùi Đức Phú
Xem chi tiết
Thắng Nguyễn
18 tháng 11 2016 lúc 17:44

Ta có: \(\frac{1}{1+x}\ge\left(1-\frac{1}{1+y}\right)+\left(1-\frac{1}{1+z}\right)\ge2\sqrt{\frac{yz}{\left(1+y\right)\left(1+z\right)}}\)

Tương tự cho 2 cái còn lại:

\(\frac{1}{1+y}\ge2\sqrt{\frac{xz}{\left(z+1\right)\left(x+1\right)}};\frac{1}{1+z}\ge2\sqrt{\frac{xy}{\left(x+1\right)\left(y+1\right)}}\)

Nhân theo vế ta được:

\(\frac{1}{1+x}\cdot\frac{1}{1+y}\cdot\frac{1}{1+z}\ge\frac{8xyz}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\)\(\Rightarrow xyz\le\frac{1}{8}\)

Dấu = khi \(\hept{\begin{cases}x=y=z\\\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}=2\end{cases}}\Leftrightarrow x=y=z=\frac{1}{2}\)

đoàn mạnh  trí
Xem chi tiết
DANG CONG DANH
Xem chi tiết
Thiên Thần Hye Kyo
Xem chi tiết
Thùy Ninh
15 tháng 7 2017 lúc 17:19

Ta có:

\(\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\ge4\) (1)

Hiển nhiên suy ra được BĐT Am-Gm

Áp dụng (1) ta được:

\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y};\frac{1}{y}+\frac{1}{z}\ge\frac{4}{y+z};\frac{1}{z}+\frac{1}{x}\ge\frac{4}{z+x}\) 

Cộng các vế BĐT ta được

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge2\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\) (2)

Tương tự như vậy ta có:

\(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{y+z}\ge2\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\) (3)

Áp dụng (2) và (3)  ta được:

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge4\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\) 

\(\Rightarrow\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le1\) 

Vậy Max A = 1  

vũ tiền châu
Xem chi tiết
Kiệt Nguyễn
26 tháng 8 2020 lúc 10:20

Dự đoán \(MinA=2\)khi \(x=y=z=\frac{1}{2}\)và \(MaxA=3\)khi x = y = z = 1. Ta sẽ chứng minh \(2\le\frac{x+y}{1+z}+\frac{y+z}{1+x}+\frac{z+x}{1+y}\le3\)

Đặt \(a=x+1;b=y+1;c=z+1\), khi đó ta được\(a,b,c\in\left[\frac{3}{2};2\right]\)

Bất đẳng thức cần chứng minh được viết lại là \(2\le\frac{a+b-2}{c}+\frac{b+c-2}{a}+\frac{c+a-2}{b}\le3\)

#Trước hết ta chứng minh\(2\le\frac{a+b-2}{c}+\frac{b+c-2}{a}+\frac{c+a-2}{b}\)\(\Leftrightarrow5\le\frac{a+b-2}{c}+1+\frac{b+c-2}{a}+1+\frac{c+a-2}{b}+1\)\(\Leftrightarrow5\le\left(a+b+c-2\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

 Theo một đánh giá quen thuộc thì \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)nên ta quy bất đẳng thức cần chứng minh về dạng \(\left(a+b+c-2\right)\frac{9}{a+b+c}\ge5\)

Đặt \(a+b+c=s\)thì ta cần chứng minh \(\frac{9\left(s-2\right)}{s}\ge5\Leftrightarrow s\ge\frac{9}{2}\)*đúng vì \(a+b+c\ge\frac{3}{2}.3=\frac{9}{2}\)*

Vậy bất đẳng thức bên trái được chứng minh

Đẳng thức xảy ra khi \(x=y=z=\frac{1}{2}\)

#Chứng minh \(\frac{a+b-2}{c}+\frac{b+c-2}{a}+\frac{c+a-2}{b}\le3\)

Không mất tính tổng quát, ta giả sử \(\frac{3}{2}\le a\le b\le c\le2\). Khi đó ta sẽ có\(\left(\frac{a}{b}+\frac{b}{a}\right)-\left(\frac{a}{2}+\frac{2}{a}\right)=\frac{\left(2-b\right)\left(a^2-2b\right)}{2ab}\le0\)hay \(\frac{a}{b}+\frac{b}{a}\le\frac{a}{2}+\frac{2}{a}\)

Hoàn toàn tương tự ta được \(\frac{b}{c}+\frac{c}{b}\le\frac{b}{2}+\frac{2}{b}\)\(\frac{a}{c}+\frac{c}{a}\le\frac{a}{2}+\frac{2}{a}\)

Cộng theo vế các bất đẳng thức trên ta được\(\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\le a+\frac{4}{a}+\frac{b}{2}+\frac{2}{b}\)

Ta cần chứng minh\(a+\frac{4}{a}+\frac{b}{2}+\frac{2}{b}\le3+\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\Leftrightarrow a+\frac{2}{a}+\frac{b}{2}\le3+\frac{2}{c}\)

Bất đẳng thức cuối cùng là một bất đẳng thức đúng vì\(\hept{\begin{cases}a+\frac{2}{a}-3=\frac{\left(a-1\right)\left(a-2\right)}{a}\le0\Leftrightarrow a+\frac{2}{a}\le3\\\frac{b}{2}\le1\le\frac{2}{c}\end{cases}}\)

Vậy bất đẳng thức bên phải được chứng minh

Đẳng thức xảy ra khi a = b = c = 1

Khách vãng lai đã xóa
Inequalities
26 tháng 8 2020 lúc 10:38

Dòng cuối là x = y = z = 1 nha

Khách vãng lai đã xóa
titanic
Xem chi tiết
Nguyễn Ngọc Ánh
5 tháng 9 2018 lúc 17:21

sai đề rồi bạn ơi 

Baek Hyun
Xem chi tiết
Hạ Vy
Xem chi tiết
Akai Haruma
27 tháng 5 2020 lúc 18:29

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{2x+y+z}\leq \frac{1}{16}\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(\frac{1}{x+2y+z}\leq \frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}\right)\)

\(\frac{1}{x+y+2z}\leq \frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{z}\right)\)

Cộng theo vế 3 BĐT trên thu được:

\(M\leq \frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{2019}{4}\)

Vậy $M_{\max}=\frac{2019}{4}$. Giá trị này đạt tại $x=y=z=\frac{3}{2019}$

Nguyễn Thị Thúy
Xem chi tiết