cho 4 STN bất kì chứng tỏ rằng trong đó có ít nhất 2 số có hiệu chia hết cho 3
Chứng minh rằng trong 11 STN bất kì bao giờ cũng có ít nhất 2 số có cs tận cùng giống nhau thì hiệu của chúng chia hết cho 10
Chứng tỏ rằng tồn tai 1 bội của 1989 dc viết bởi toàn cs 1 và cs 0
Gợi ý : Dùng phương pháp Đi-rích-lê
Làm nhanh đúng mk tick Mk cần gấp
Cho STN không chia hết cho 6. Hãy chứng tỏ rắng trong đó có ít nhất 3 số chia hết cho 6 cố cùng số dư.
Cho STN không chia hết cho 6. Hãy chứng tỏ rắng trong đó có ít nhất 3 số chia hết cho 6 cố cùng số dư. ( Trình bày bài giải nhé )
Cho 2002 số tự nhiên,trong đó có 4 số bất kì trong chúng đều lập nên 1 tỉ lệ thức . Chứng minh rằng trong các số đó luôn luôn tồn tại ít nhất 501 số bằng nhau
Chứng minh rằng:Với 6 STN bất kì luôn chọn được 2 số có hiệu chia hết cho 5
Ta thấy phép chia cho 5 có thể được các số dư là 0, 1, 2, 3, 4,
Xét các trường hợp:
· cả 4 số có số dư khác nhau (0,1,2,3);(0,2,3,4);(0,1 4,2); (0,4,2,3);(1,2,3,4)
bao giờ cũng có ít nhất 1 cặp số có số dư là (1+4) hoặc (2+3)
--> Tổng 1 cặp số đó chia hết cho 5
Với nhóm số có số dư (1,2,3,4) --> 2 cặp có tổng chia hết cho 5
· cả 4 số có số dư trùng nhau --> 6 cặp từng đôi một có hiệu = 0
--> chia hết cho 5
· 2 cặp có số dư trùng nhau --> Hiệu của 2 cặp đó = 0 --> chia hết cho 5
· 1 cặp có số dư trùng nhau --> Hiệu của 1 cặp đó = 0 --> chia hết cho 5
Vậy ít nhất cũng chọn ra 1 cặp số mà tổng hoặc hiệu của chúng chia hết cho 5.
Chứng tỏ rằng hai số chia cho 9 có cùng số dư thì hiệu hai số đó chia hết cho 9
Gọi 2 số đã cho là a và b (a,b thuộc N và a phải lớn hơn hoặc bằng b )
Nên: a=9 k1+ r
b=9 k2+r
Ta có: Hiệu a-b = (9 k1+r) - (9 k2 +r)
= 9 k1+r - 9 k2-r
= 9 k1 - 9 k2 + r-r
= 9.k1-9.k2
= 9. (k1+k2) chia hết cho 9
Hay (a-b) chia hết cho 9
Vậy hai số chia hết cho 9 có cùng số dư thì hiệu chúng chia hết cho 9
Nhớ k đúng cho mình nha!
Cho 3 số tự nhiên bất kì. Chứng minh rằng hiệu của 2 số bất kì luôn chia hết cho 2
Có 3 số => luôn chọn ra được 2 số cùng tính chẵn lẻ
=> hiệu của chúng chia hết cho 2
=> đpcm
Cho 5 STN lẻ bất kì, chứng minh rằng ta luôn chọn được 4 số mà tổng của chúng chia hết cho 4
CÓ LỜI GIẢI CÀNG TỐT NHA MẤY BẠN!!!!!
Chứng tỏ rằng nếu hai số có cùng số dư khi chia cho 7 thì hiệu của chúng chia hết cho 7
Gọi a và b là hai số có cùng số dư r khi chia cho 7 (giả sử a ≥ b)
Ta có a = 7m + r, b = 7n + r (m, n ∈ N)
Khi đó a - b = (7m + r) - (7n + r) = 7m - 7n = 7.(m – n)
Ta có: 7 ⋮ 7 nên 7(m - n) ⋮ 7 hay a - b ⋮ 7