Tìm x, y bt: \(x>0,y>0\) và \(\frac{x}{y}=\frac{2}{5};x^2+y^2=29\)
mn giúp tôi đc ko??? Lm ơn
Cho x>0 y>0 và \(x+y\le1\) tìm GTNN của bt
\(Q=x^2+y^2+\frac{1}{x^2}+\frac{1}{\cdot y^2}\)
Tìm x,y,z bt:
( x- \(\frac{1}{3}\)) (y - \(\frac{1}{2}\)) ( z - 5) =0 và x + 2 = y+1 = z + 3
\(\left(x-\frac{1}{3}\right)\left(y-\frac{1}{2}\right)\left(z-5\right)=0.\)
\(\Rightarrow x-\frac{1}{3}=0\)hoặc \(y-\frac{1}{2}=0\)hoặc \(z-5=0\)
TH1: \(x-\frac{1}{3}=0\Rightarrow x=\frac{1}{3}\Rightarrow\hept{\begin{cases}y=\frac{4}{3}\\z=-\frac{2}{3}\end{cases}}\)
Xét 2 trường hợp cpnf lại ta được ba bộ số x,y,z cần tìm
Bài 1:Cho x>0;y>0 và \(x+y\le1\) tìm GTNNc của các bt sau
a,\(A=\frac{2}{xy}+\frac{3}{x^2+y^2}\)
\(b,B=\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy\)
Bà 2:Cho x+y=1 tìm GTNN của bt
\(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
Bài 3:Cho x+y+z=3
a,Tìm GTNN của bt \(A=x^2+y^2+z^2\)
b,Tìm GTLN của bt \(B=xy+yz+xz\)
1/a/
\(A=\frac{2}{xy}+\frac{3}{x^2+y^2}=\left(\frac{1}{xy}+\frac{1}{xy}+\frac{4}{x^2+y^2}\right)-\frac{1}{x^2+y^2}\)
\(\ge\frac{\left(1+1+2\right)^2}{\left(x+y\right)^2}-\frac{1}{\frac{\left(x+y\right)^2}{2}}=16-2=14\)
Dấu = xảy ra khi \(x=y=\frac{1}{2}\)
b/
\(4B=\frac{4}{x^2+y^2}+\frac{8}{xy}+16xy=\left(\frac{4}{x^2+y^2}+\frac{1}{xy}+\frac{1}{xy}\right)+\left(\frac{1}{xy}+16xy\right)+\frac{5}{xy}\)
\(\ge\frac{\left(1+1+2\right)^2}{\left(x+y\right)^2}+2\sqrt{\frac{1}{xy}.16xy}+\frac{5}{\frac{\left(x+y\right)^2}{4}}\)
\(=16+8+20=44\)
\(\Rightarrow B\ge11\)
Dấu = xảy ra khi \(x=y=\frac{1}{2}\)
2/
\(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
\(\ge\frac{\left(x+\frac{1}{x}+y+\frac{1}{y}\right)^2}{2}\ge\frac{\left(1+\frac{4}{x+y}\right)^2}{2}=\frac{25}{2}\)
Dấu = xảy ra khi \(x=y=\frac{1}{2}\)
Tìm GTNN của bt: P= \(\frac{x^2}{y^2}\)+ \(\frac{y^2}{X^2}\)- 3 (\(\frac{x}{y}\)+ \(\frac{y}{x}\)) +5 ( với x # o, y # 0)
Ta có:
\(2P=\frac{2x^2}{y^2}+\frac{2y^2}{x^2}-6\left(\frac{x}{y}+\frac{y}{x}\right)+10\)
\(=\left(\frac{x^2}{y^2}+2+\frac{y^2}{x^2}\right)-4\left(\frac{x}{y}+\frac{y}{x}\right)+4+\left(\frac{x^2}{y^2}-2\frac{x}{y}+1\right)+\left(\frac{y^2}{x^2}-2\frac{y}{x}+1\right)+2\)
\(=\left(\frac{x}{y}+\frac{y}{x}-2\right)^2+\left(\frac{x}{y}-1\right)^2+\left(\frac{y}{x}-1\right)^2+2\)
\(\ge2\)
\(\Rightarrow P\ge1\)
Dấu = xảy ra khi x = y
Bt: Cho x,y > 0 và x+y=1
Tìm gtnn của A= \(A=\frac{1}{x^2+y^2}+\frac{3}{4xy}\)
Tổng không đổi tích lớn nhất khi 2 số bằng nhau
Do x+y=1(không đổi)
=>xy đạt giá trị lớn nhất <=>x=y=0,5 =>xy=0,25
Ta có:x2+y2\(\ge\)2xy
=> bạn làm iaaps đi tui bận tí
1.Tìm số tự nhiên x,y sao cho:
\(\frac{x}{3}-\frac{4}{y}=\frac{1}{5}\)
2.tìm số nguyên x bt
\(x-3+x-3=0\)
Lm câu 2 trc nhé:
\(x-3+x-3=\left(x-3\right)+\left(x-3\right)=2\left(x-3\right)=0\)
\(\Rightarrow x-3=0\Rightarrow x=3\)
Chỉ lm tắt thôi ạ, hiểu rồi tự trình bày nha~
\(\frac{x}{3}-\frac{4}{y}=\frac{1}{5}\)
\(\Leftrightarrow\frac{4}{y}=\frac{x}{3}-\frac{1}{5}\)
\(\Leftrightarrow\frac{4}{y}=\frac{x5}{15}-\frac{3}{15}\)
\(\Leftrightarrow\frac{4}{y}=\frac{x5-3}{15}\)
\(\Leftrightarrow4.15=x5-3y\)
\(\Leftrightarrow60=x5-3y\)
\(\Leftrightarrow x5-3y=60\)
tìm x,y như bt nhé
\(\frac{x}{3}-\frac{4}{y}=\frac{1}{5}\Rightarrow\frac{4}{y}=\frac{1}{5}+\frac{x}{3}\Rightarrow\frac{4}{y}=\frac{3}{15}+\frac{5x}{15}\Rightarrow\frac{4}{y}=\)\(\frac{3+5x}{15}\)
..................................
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
đến đây tự làm nhé
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
hay để t lm cho
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
ko mún làm nữa
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
lần sau nhé
.
.
.
.
.
.
.
.
.
.
.
.
.
/
/
/
/
pái pái
/
/
/
/
/
/
/
/
/
/
/
/
/
/
1. Tìm 2 số a ; b khác 0 bt rằng hiệu của a và b = thương của a và b và = tổng của a và b
2. Cho x + y + z khác 0 và \(\frac{x}{y+z+6}=\frac{y}{x+z+2}=\frac{z}{x+y-10}=\frac{1}{6}\left(x+y+z\right)\) . Tìm x ; y ; z.
NHANH LÊN NHA MK CẦN GẤP GẤP LẮM LUÔN ĐẤY
AI NHANH MK CHO 1 TICK, CHIỀU NAY MK ĐI HOK THÊM R
cho x, y >0 và x+y\(\le\)2 tìm gtnn của bt
\(p=\frac{20}{x^2+y^2}+\frac{11}{xy}\)
Từ BĐT \(\left(x+y\right)^2\ge4xy\) ta suy ra \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) và \(\frac{1}{xy}\ge\frac{4}{\left(x+y\right)^2}\)
Ta có : \(P=\frac{20}{x^2+y^2}+\frac{11}{xy}=20\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{1}{xy}\ge20.\frac{4}{\left(x+y\right)^2}+\frac{4}{\left(x+y\right)^2}\ge\frac{80}{4}+\frac{4}{4}=21\)
Dấu "=" xảy ra khi x = y = 1
Vậy Min P = 21 khi x = y = 1
Ta có :
\(P=\frac{20}{x^2+y^2}+\frac{11}{xy}\)
\(=20.\left[\frac{1}{x^2+y^2}+\frac{1}{2xy}\right]+\frac{1}{xy}\)
\(\ge20\cdot\frac{4}{x^2+y^2+2xy}+\frac{4}{\left(x+y\right)^2}\)
\(\ge20\cdot\frac{4}{2^2}+\frac{4}{2^2}=21\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=1\)
Vậy \(P_{min}=21\) khi \(x=y=1\)
Tìm cặp số nguyên x , y
a) \(\frac{x}{5}=\frac{6}{7}\)và x > y > 0
b) \(\frac{-2}{x}=\frac{y}{5}\)và x < 0 < y