Tìm hai số hữu tỉ biết rằng: \(a-b=\frac{a}{b}\)và \(a-b=2\left(a+b\right)\).
Cho a,b,c là các số hữu tỉ chứng minh rằng: \(\sqrt{\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}}\)là số hữu tỉ
bạn tham khảo nhé : https://olm.vn/hoi-dap/detail/106812735697.html
không hiện link thì mình gửi qua tin nhắn nhé
Tìm hai số hữu tỉ a và b biết rằng : a-b=2(a+b)=\(3.\frac{a}{b}\)
Ta có:
a - b = 2(a + b)
=> a - b = 2a + 2b
=> a - 2a = 2b + b
=> -a = 3b
\(\Rightarrow\frac{a}{b}=-3\); \(a=-3b\)
Laị có:
a - b = \(3.\frac{a}{b}\)
=> -3b - b = 3.(-3)
=> -4b = -9
\(\Rightarrow b=\frac{-9}{-4}=\frac{9}{4}\)
\(\Rightarrow a=\frac{9}{4}.\left(-3\right)=\frac{-27}{4}\)
Vậy \(a=\frac{-27}{4};b=\frac{9}{4}\)
A, Tìm hai số hữu tỉ a và b biết:\(a-b=2.\left(a+b\right)=a:b\)
ta có a-b=2(a+b)=a:b(1)
từa-b=2(a+b)=> a-b=2a+2b => -a=3b
=> a=-3b
Mặt khác ta có a-b=a:b => -3b -b=-3b :b
=> -4b=-3 =>b=\(\frac{3}{4}\)
=> a=\(-3.\frac{3}{4}=\frac{-9}{4}\)
Vậy ...........
a, a - b = 2 \((a+b)\)
a - b = 2a + 2b
a - 2a = 2b + b
- a = 3b
Ta có : -a = 3b => a = - 3b => a : b = - 3b : b = -3
a - b = 2 \((a+b)\)= -3
=> a - b = -3 ; 2\((a+b)\)= -3 => a + b = \(-\frac{3}{2}\)
CM:A=\(\sqrt{\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}}\)là số hữu tỉ với a,b,c là số hữu tỉ và khác nhau
Đặt \(a-b=x;b-c=y;c-a=z\Rightarrow x+y+z=0\)
Ta có: \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)\)
\(=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\frac{\left(x+y+z\right)}{xyz}=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
\(A=\sqrt{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}}=\sqrt{\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}=\left|\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right|\) là số hữu tỉ
\(A=\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\) thì phải?
Cho a,b,c là 3 số hữu tỉ khác nhau đôi một.Chứng minh rằng:
\(A=\sqrt{\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}}\)là một số hữ tỉ
do bài này quá nhiều người đã đăng rồi nên mình sẽ gửi link qua phần tin nhắn cho bạn nhé
Bạn có nhìn thấy hình không ạ ?
Mình lấy bài tại link : https://olm.vn/hoi-dap/detail/82024444022.html
Có gì bạn vào đó tham khảo nhé !
_ Hok tốt _
Cho a,b,c là số hữu tỉ khác 0. Đôi một phân biệt và thỏa mãn
\(\frac{a^2}{\left(b-c\right)^2}+\frac{b^2}{\left(c-a\right)^2}+\frac{c^2}{\left(a-b\right)^2}\le2\).
Cmr\(\sqrt{\frac{\left(b-c\right)^2}{a^2}+\frac{\left(c-a\right)^2}{b^2}+\frac{\left(a-b\right)^2}{c^2}}\) hữu tỉ
Cho a,b,c là các số hữu tỉ khác 0, đôi một phân biệt và thỏa mãn
\(\frac{a^2}{\left(b-c\right)^2}+\frac{b^2}{\left(c-a\right)^2}+\frac{c^2}{\left(a-b\right)^2}\le2\).CMR
\(\sqrt{\frac{\left(b-c\right)^2}{a^2}+\frac{\left(c-a\right)^2}{b^2}+\frac{\left(a-b\right)^2}{c^2}}\)hữu tỉ.
Cho a,b,c là các số hữu tỉ, đôi một khác nhau. Chứng minh rằng T= \(\frac{1}{^{\left(a-b\right)^2}}\)+\(\frac{1}{\left(b-c\right)^2}\)+\(\frac{1}{\left(a-c\right)^2}\)là bình phương của một số hữu tỉ
1) Tìm 2 số hữu tỉ a và b biết a + b = a.b = a : b
2) tim x biết \(\left(x-2\right)\left(x+\frac{3}{5}\right)>0\)