Chứng tỏ rằng (n+3):(n+6);2(với n thuộc tập hợp N)
a,chứng tỏ rằng với mọi số tự nhiên n thì tích (n+3).(n+6) chia hết cho 2
b, chứng tỏ rằng với mọi số tự nhiên n thì tích n.(n+5) chia hết cho 2
Chứng tỏ rằng với mọi số tự nhiên n thì tích (n+3).(n+6)chia hết cho 2
Chứng tỏ rằng với mọi số tự nhiên n thì
n.(n+5)chia hết cho 2
1) +Với n là số chẵn => n+3 lẻ và n+6 chẵn. Vì 1 số chẵn và 1 số lẻ nhân với nhau tạo thành số chẵn hay tích đó chia hết cho 2 ( đpcm)
+Với n là số lẻ => n+3 chẵn và n+6 lẻ ( tương tự câu trên)
2)Tg tự câu a
1 + 1 =
em can gap!!!
Nhanh e k cho
Biết 6 chia hết cho (n+3)
Chứng tỏ rằng (5.n+21) chia hết cho (n+3)
Chứng tỏ rằng với mọi n thì (n+3).(n+6) là số chẵn
Bài 6: Chứng tỏ rằng với mọi số tự nhiên n thì tích (n+3)(n+6) chia hết cho 2
+)Nếu n lẻ => (n+3) chẵn =>(n+3). (n+6) chia hết cho 2
+)Nếu n chẵn=> (n+6) chẵn =>(n+3). (n+6) chia hết cho 2
Vậy (n+3). (n+6) chia hết cho 2 với mọi n là số tự nhiên.
Chứng tỏ rằng với số tự nhiên thuộc n thì (n+3) x (n+6)
Nhẩm cũng ra : Kiến thức cơ bản
lẻ chia 2 dư 1
chẵn chia 2 hết
+Nếu n là số lẻ => n+3 là số chẵn 9+3=12
n+6 là số lẻ 9+6=15
Tích chẵn nhân lẻ = chẵn: chia hết cho 2
ví dụ 12x15=180
+Nếu n là số chẵn => n+3 là số lẻ 8+3=11
n+6 là số chẵn 8+6=14
Tích lẻ nhân chẵn = chẵn: chia hết cho 2
11x 14=154
Tông hợp lại=> luôn chia hết cho 2
Ngoài lề
Vì sao lẻ+lẻ= chẵn (2n+1) + (2k+1)= 2(n+k+1)
Lẻ+chẵn=lẻ (2n+1) + 2k = 2(n+k) +1
lẻ x chẵn=chẵn (2n+1).2k = 2(2kn+k)
Nhẩm cũng ra : Kiến thức cơ bản
lẻ chia 2 dư 1
chẵn chia 2 hết
+Nếu n là số lẻ => n+3 là số chẵn 9+3=12
n+6 là số lẻ 9+6=15
Tích chẵn nhân lẻ = chẵn: chia hết cho 2
ví dụ 12x15=180
+Nếu n là số chẵn => n+3 là số lẻ 8+3=11
n+6 là số chẵn 8+6=14
Tích lẻ nhân chẵn = chẵn: chia hết cho 2
11x 14=154
Tông hợp lại=> luôn chia hết cho 2
Ngoài lề
Vì sao lẻ+lẻ= chẵn (2n+1) + (2k+1)= 2(n+k+1)
Lẻ+chẵn=lẻ (2n+1) + 2k = 2(n+k) +1
lẻ x chẵn=chẵn (2n+1).2k = 2(2kn+k)
Nếu n=2k (k thuộc N) thì n +6=2k+6 chia hết cho 2.
Nếu 2=2k+1(k thuộc N) thì n+3=2k+4chia hết cho 2.
Vậy (n+3)(n+6) chia hết cho 2
Cho n thuộc Z . Chứng tỏ rằng n^3 - n + 2 không chia hết cho 6
\(n^3-n=n\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)\\ \) luôn chia hết cho 3
\(\Rightarrow n^3-n+2\) không chia hết cho 3=> không chia hết cho 6 => dpcm
1 Chứng tỏ rằng
a ) 10 ^21 +20 chia hết cho 6
b) 10^2015 +8 chia hết cho 18
2 Chứng tỏ rằng vs mọi số tự nhiên n thì ( n +n ) . ( n + 12 ) chia hết cho 2
3 Chứng tỏ rằng tính các ba số chẵn liên tiếp chia hết cho 48
Chứng tỏ rằng mọi stn n ta luôn có (n+3).(n+6) chia hết cho 2
TL :
Nếu n = 2k ( k thuộc N ) thì n + 6 = 2k + 6 chia hết cho 2
Nếu n = 2k + 1 ( k thuộc N ) thì n + 3 = 2k + 1 + 3 = 2k + 4 chia hết cho 2
Vậy ( n + 3 ) . ( n + 6 ) chia hết cho 2
Chúc bn hok tốt ~