Chứng minh nếu \(a^2\)=bc (với a\(\ne\)b và a\(\ne\)c) thì\(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)
Ai đúng nhanh nhất mk sẽ tk
Chứng minh rằng nếu: \(\frac{c^2}{2}=-ab+ac+bc\) với \(b\ne c\)và \(a+b\ne c\)thì
\(\frac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}\)= \(\frac{a-c}{b-c}\)
Giups mk vs! Ai đug mk cho 3 t
Bài 1: Chứng minh rằng nếu a2=bc ( với a\(\ne\)b và a\(\ne\)c thì \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)
Ta có a2 = bc
<=> a . a = b .c
<=> \(\frac{a}{b}=\frac{c}{a}\Leftrightarrow\frac{b}{a}=\frac{a}{c}\)
Áp dụng t/c dãy tỉ số = nhau , ta có
\(\frac{b}{a}=\frac{a}{c}=\frac{a+b}{a+c}\)(1)
\(\frac{b}{a}=\frac{a}{c}=\frac{a-b}{c-a}\)(2)
(1),(2) \(\Leftrightarrow\frac{a+b}{a+c}=\frac{a-b}{c-a}\Leftrightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\left(đpcm\right)\)
Chứng minh rằng nếu \(a^2=bc\)(với \(a\ne b;a\ne c\)) thì \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)
\(a^2=bc\)
\(\Rightarrow\frac{a}{c}=\frac{b}{a}\)
Áp dụng tính chất của dãy tỉ số bằng nhau; ta có :
\(\frac{a}{c}=\frac{b}{a}=\frac{a+b}{c+a}=\frac{a-b}{c-a}\)
\(\Rightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\)
Các bạn giúp mk nhé,ai làm nhanh và đúng mk sẽ tick
CMR với b,d\(\ne\)0 , \(\frac{a}{b}< \frac{c}{d}\)thì \(\frac{a}{b}< \frac{a+c}{b+c}< \frac{c}{d}\)
Chứng minh rằng nếu \(c^2+2\left(ab-ac-bc\right)=0\) với \(b\ne c\) và \(\left(a+b\right)\ne c\) thì \(\frac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}=\frac{a-c}{b-c}\)
m.n giúp mk nha!!!
Chứng minh rằng nếu a2 = bc ( với a \(\ne\) b và a \(\ne\) c ) thì \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)
\(a^2=bc\Rightarrow\frac{a}{b}=\frac{c}{a}=\frac{a+c}{b+a}=\frac{c-a}{a-b}\)
\(\Rightarrow\left(a+b\right)\left(c-a\right)=\left(a+c\right)\left(a-b\right)\Rightarrow\frac{a+b}{a-b}=\frac{a+c}{c-a}\)
=>đpcm
Có a2 = bc
=> \(\frac{a}{c}=\frac{b}{a}=\frac{a+b}{c+a}=\frac{a-b}{c-a}\)(Tính chất dãy tỉ số bằng nhau)
=> \(\frac{a+b}{c+a}=\frac{a-b}{c-a}\)
=> \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)
=> Đpcm
Chứng minh rằng nếu \(a^2=bc\) ( với \(a\ne b,a\ne c\)) thì \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)
\(a^2=bc\Rightarrow\frac{a}{c}=\frac{b}{a}=\frac{a+b}{c+a}=\frac{a-b}{c-a}\)=>(a+b)(c-a)=(c+a)(a-b)
\(\Rightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\)
=>đpcm
Chứng minh rằng nếu \(a^2=bc\) ( với \(a\ne b,a\ne c\)) thì \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)
\(a^2=bc\Rightarrow\frac{a}{c}=\frac{b}{a}=\frac{a+b}{c+a}=\frac{a-b}{c-a}\Rightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\left(đpcm\right)\).
Chứng minh rằng nếu \(a^2\)= bc(với a\(\ne\)b và a \(\ne\)c) thì \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)