B = - \(\frac{4}{5}\)+\(\frac{4}{5^2}\)-\(\frac{4}{5^3}\)+.... - \(\frac{4}{5^{199}}\)+\(\frac{4}{5^{200}}\)
B =?
Tính \(B=-\frac{4}{5}+\frac{4}{5^2}-\frac{4}{5^3}+...+\frac{4}{5^{200}}\)
\(-5B=4-\frac{4}{5}+\frac{4}{5^2}-....-\frac{4}{5^{199}}\)
\(-5B-B=4-\frac{4}{5^{200}}\)
\(-6B=\frac{4\left(5^{200}-1\right)}{5^{200}}\)
\(B=\frac{2\left(1-5^{200}\right)}{5^{200}.3}\)
Ta có:\(B=...\)
\(\Leftrightarrow5B=-4+\frac{4}{5}-\frac{4}{5^2}+...+\frac{4}{5^{199}}\)
\(\Leftrightarrow5B+B=-4+\frac{4}{5^{200}}\)
\(\Leftrightarrow6B=-4+\frac{4}{5^{200}}\Rightarrow B=\frac{-4+\frac{4}{5^{200}}}{6}=\frac{-2+\frac{2}{5^{200}}}{3}\)
Tính
A = \(\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{100}}\)
B = \(\frac{4}{5}+\frac{4}{5^2}-\frac{4}{5^3}+...+\frac{4}{5^{200}}\)
A=\(\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{100}}\)
\(\Rightarrow7A=(1+\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{99}})-\left(\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+....+\frac{1}{7^{100}}\right)\)
\(\Rightarrow6A=\left(1-\frac{1}{7^{99}}\right)\)
\(\Rightarrow A=\left(1-\frac{1}{7^{99}}\right):6\)
Câu b tương tự nha
a) \(A=\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...........+\frac{1}{7^{100}}\)
\(\Rightarrow7A=1+\frac{1}{7}+\frac{1}{7^2}+.........+\frac{1}{7^{99}}\)
\(\Rightarrow7A-A=6A=1-\frac{1}{7^{100}}\)
\(\Rightarrow A=\frac{1-\frac{1}{7^{100}}}{6}\)
\(A=\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{100}}\)
\(\frac{A}{7}=\frac{1}{7^2}+\frac{1}{7^3}+\frac{1}{7^4}+...+\frac{1}{7^{101}}\)
\(A-\frac{A}{7}=\left(\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{100}}\right)-\left(\frac{1}{7^2}+\frac{1}{7^3}+\frac{1}{7^4}+...+\frac{1}{7^{101}}\right)\)
\(\frac{6}{7}A=\frac{1}{7}-\frac{1}{7^{101}}\)
\(A=\left(\frac{1}{7}-\frac{1}{7^{101}}\right).\frac{7}{6}\)
\(A=\frac{1}{6}-\frac{1}{6.7^{100}}\)
\(B=\frac{4}{5}+\frac{4}{5^2}-\frac{4}{5^3}+...+\frac{4}{5^{200}}\)
\(=4.\left(\frac{1}{5}+\frac{1}{5^2}-\frac{1}{5^3}+...+\frac{1}{5^{200}}\right)\)
Gọi \(C=\frac{1}{5}+\frac{1}{5^2}-\frac{1}{5^3}+...+\frac{1}{5^{200}}\)
\(\frac{C}{5}=\frac{1}{5^2}+\frac{1}{5^3}-\frac{1}{5^4}+...+\frac{1}{5^{201}}\)
\(C-\frac{5}{C}=\left(\frac{1}{5}+\frac{1}{5^2}-\frac{1}{5^3}+...+\frac{1}{5^{200}}\right)-\left(\frac{1}{5^2}+\frac{1}{5^3}-\frac{1}{5^4}+...+\frac{1}{5^{201}}\right)\)
\(\frac{4}{5}C=\frac{1}{5}-\frac{1}{5^{201}}\)
\(C=\left(\frac{1}{5}-\frac{1}{5^{201}}\right).\frac{5}{4}\)
\(=\frac{1}{4}-\frac{1}{4.5^{200}}\)
Thay vào B ta có
\(B=4.\left(\frac{1}{4}-\frac{1}{4.5^{200}}\right)\)
=\(=1-\frac{1}{5^{200}}\)
Rút gọn biểu thức sau
B = 1 + \(\frac{3}{2^3}+\frac{4}{2^4}+\frac{5}{2^5}+...+\frac{200}{2^{200}}\)
\(B=1+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{200}{2^{200}}\)
\(2B=2\left(1+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{200}{2^{200}}\right)\)
\(2B=2+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{200}{2^{199}}\)
\(2B-B=\left(2+\frac{3}{2^2}+...+\frac{200}{2^{199}}\right)-\left(1+\frac{3}{2^3}+...+\frac{200}{2^{200}}\right)\)
.... đặt A=... giiả tiếp
Tính các tổng sau:
a) \(\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{100}}.\)
b) \(-\frac{4}{5}+\frac{4}{5^2}-\frac{4}{5^3}+...+\frac{4}{5^{200}}.\)
c)\(\frac{-1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{100}}-\frac{1}{3^{101}}\)
Đăt A = \(\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+......+\frac{1}{7^{100}}\)
\(\Rightarrow7A=1+\frac{1}{7}+\frac{1}{7^2}+.....+\frac{1}{7^{100}}\)
\(\Rightarrow7A-A=1-\frac{1}{7^{100}}\)
\(\Rightarrow6A=1-\frac{1}{7^{100}}\)
\(\Rightarrow A=\frac{1-\frac{1}{7^{100}}}{6}\)
CMR: \(14< \frac{2}{1}.\frac{4}{3}.\frac{6}{5}....\frac{200}{199}< 20\)
CM \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+....+\frac{1}{199}-\frac{1}{200}=\frac{1}{101}+\frac{1}{102}+....+\frac{1}{200}\)
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{199}+\frac{1}{200}\right)-\left(1+\frac{1}{2}+...+\frac{1}{100}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
Ta có :
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{199}-\frac{1}{200}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{199}+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{199}+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\left(đpcm\right)\)
Chúc bạn học tốt !!!
Cho A=\(\frac{2}{1}.\frac{4}{3}.\frac{6}{5}...\frac{200}{199}CMR:14< A< 20\)
có \(ab=\frac{3}{5}\Leftrightarrow a=\frac{3}{5b}\)
có \(bc=\frac{4}{5}\Rightarrow c=\frac{4}{5b}\)
mà \(ac=\frac{4}{5}\Leftrightarrow\frac{3}{5b}.\frac{4}{5b}=\frac{3}{4}\Leftrightarrow\frac{12}{25.b^2}=\frac{3}{4}\Leftrightarrow12.4=3.25.b^2\)
\(\Leftrightarrow\frac{48}{75}=b^2\Leftrightarrow b^2=\frac{16}{25}\Leftrightarrow b=\pm\frac{4}{5}\)
với \(b=\frac{4}{5}\)thì \(a=3:\left(5.\frac{4}{5}\right)=3:4=\frac{3}{4}\)
\(c=4:\left(5.\frac{4}{5}\right)=4:4=1\)
với \(b=-\frac{4}{5}\)thì \(a=3:\left(5.\frac{-4}{5}\right)=3:-4=-\frac{3}{4}\)
\(c=4:\left(5.\frac{-4}{5}\right)=4:-4=-1\)
vậy \(\left(a;b;c\right)\in\left\{\left(\frac{4}{5};\frac{3}{4};1\right);\left(\frac{-4}{5};\frac{-3}{4};-1\right)\right\}\)
Rút gọn biểu thức sau
B = 1 + \(\frac{3}{2^3}+\frac{4}{2^4}+\frac{5}{2^5}+...+\frac{200}{2^{200}}\)