Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Minh Tâm
Xem chi tiết

\(-5B=4-\frac{4}{5}+\frac{4}{5^2}-....-\frac{4}{5^{199}}\)

\(-5B-B=4-\frac{4}{5^{200}}\)

\(-6B=\frac{4\left(5^{200}-1\right)}{5^{200}}\)

\(B=\frac{2\left(1-5^{200}\right)}{5^{200}.3}\)

Ta có:\(B=...\)

\(\Leftrightarrow5B=-4+\frac{4}{5}-\frac{4}{5^2}+...+\frac{4}{5^{199}}\)

\(\Leftrightarrow5B+B=-4+\frac{4}{5^{200}}\)

\(\Leftrightarrow6B=-4+\frac{4}{5^{200}}\Rightarrow B=\frac{-4+\frac{4}{5^{200}}}{6}=\frac{-2+\frac{2}{5^{200}}}{3}\)

Legend
Xem chi tiết
ʚ๖ۣۜAηɗσɾɞ‏
26 tháng 10 2020 lúc 20:20

A=\(\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{100}}\)

\(\Rightarrow7A=(1+\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{99}})-\left(\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+....+\frac{1}{7^{100}}\right)\)

\(\Rightarrow6A=\left(1-\frac{1}{7^{99}}\right)\)

\(\Rightarrow A=\left(1-\frac{1}{7^{99}}\right):6\)

Câu b tương tự nha

Khách vãng lai đã xóa
Nobi Nobita
26 tháng 10 2020 lúc 20:22

a) \(A=\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...........+\frac{1}{7^{100}}\)

\(\Rightarrow7A=1+\frac{1}{7}+\frac{1}{7^2}+.........+\frac{1}{7^{99}}\)

\(\Rightarrow7A-A=6A=1-\frac{1}{7^{100}}\)

\(\Rightarrow A=\frac{1-\frac{1}{7^{100}}}{6}\)

Khách vãng lai đã xóa
Vương Hải Nam
26 tháng 10 2020 lúc 20:28

\(A=\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{100}}\)

\(\frac{A}{7}=\frac{1}{7^2}+\frac{1}{7^3}+\frac{1}{7^4}+...+\frac{1}{7^{101}}\)

\(A-\frac{A}{7}=\left(\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{100}}\right)-\left(\frac{1}{7^2}+\frac{1}{7^3}+\frac{1}{7^4}+...+\frac{1}{7^{101}}\right)\)

\(\frac{6}{7}A=\frac{1}{7}-\frac{1}{7^{101}}\)

\(A=\left(\frac{1}{7}-\frac{1}{7^{101}}\right).\frac{7}{6}\)

\(A=\frac{1}{6}-\frac{1}{6.7^{100}}\)

\(B=\frac{4}{5}+\frac{4}{5^2}-\frac{4}{5^3}+...+\frac{4}{5^{200}}\)

\(=4.\left(\frac{1}{5}+\frac{1}{5^2}-\frac{1}{5^3}+...+\frac{1}{5^{200}}\right)\)

Gọi \(C=\frac{1}{5}+\frac{1}{5^2}-\frac{1}{5^3}+...+\frac{1}{5^{200}}\)

\(\frac{C}{5}=\frac{1}{5^2}+\frac{1}{5^3}-\frac{1}{5^4}+...+\frac{1}{5^{201}}\)

\(C-\frac{5}{C}=\left(\frac{1}{5}+\frac{1}{5^2}-\frac{1}{5^3}+...+\frac{1}{5^{200}}\right)-\left(\frac{1}{5^2}+\frac{1}{5^3}-\frac{1}{5^4}+...+\frac{1}{5^{201}}\right)\)

\(\frac{4}{5}C=\frac{1}{5}-\frac{1}{5^{201}}\)

\(C=\left(\frac{1}{5}-\frac{1}{5^{201}}\right).\frac{5}{4}\)

\(=\frac{1}{4}-\frac{1}{4.5^{200}}\)

Thay vào B ta có

\(B=4.\left(\frac{1}{4}-\frac{1}{4.5^{200}}\right)\)

=\(=1-\frac{1}{5^{200}}\)

Khách vãng lai đã xóa
Nguyễn Hà Khắc
Xem chi tiết
Lightning Farron
23 tháng 1 2017 lúc 18:37

\(B=1+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{200}{2^{200}}\)

\(2B=2\left(1+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{200}{2^{200}}\right)\)

\(2B=2+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{200}{2^{199}}\)

\(2B-B=\left(2+\frac{3}{2^2}+...+\frac{200}{2^{199}}\right)-\left(1+\frac{3}{2^3}+...+\frac{200}{2^{200}}\right)\)

.... đặt A=... giiả tiếp

Nguyễn Trịnh Nam Phương
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
3 tháng 7 2017 lúc 9:54

Đăt A = \(\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+......+\frac{1}{7^{100}}\)

\(\Rightarrow7A=1+\frac{1}{7}+\frac{1}{7^2}+.....+\frac{1}{7^{100}}\)

\(\Rightarrow7A-A=1-\frac{1}{7^{100}}\)

\(\Rightarrow6A=1-\frac{1}{7^{100}}\)

\(\Rightarrow A=\frac{1-\frac{1}{7^{100}}}{6}\)

ultimate mystic gohan
Xem chi tiết
Quách Trung Kiên
Xem chi tiết
Thanh Tùng DZ
19 tháng 5 2018 lúc 16:19

\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)

\(=\left(1+\frac{1}{3}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{199}+\frac{1}{200}\right)-\left(1+\frac{1}{2}+...+\frac{1}{100}\right)\)

\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)

Arima Kousei
19 tháng 5 2018 lúc 16:20

Ta có : 

\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{199}-\frac{1}{200}\)

\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{199}+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{199}+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)

\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\left(đpcm\right)\)

Chúc bạn học tốt !!! 

Nguyễn Minh Châu
Xem chi tiết
vinh
Xem chi tiết
Nguyễn Hà Khắc
Xem chi tiết