Chứng tỏ rằng \(\frac{48n+5}{72n}\) không thể viết dưới dạng số thập phân hữu hạn.
Chứng tỏ rằng \(\frac{21n+7}{3n}\) không thể viết được dưới dạng số thập phân hữu hạn
Ta có:
\(\frac{21n+7}{3n}=\frac{21n}{3n}+\frac{7}{3n}=7+\frac{7}{3n}\)
Giả sử \(\frac{21n+7}{3n}\) được viết dưới dạng số thập phân hữu hạn thì \(\frac{7}{3n}\) cũng được viết dưới dạng số thập phân hữu hạn
Ta đã biết 1 số hữu tỉ có thể viết dưới dạng số thập phân hữu hạn khi và chỉ khi mẫu của nó chỉ có ước là 2 hoặc 5 nên để \(\frac{7}{3n}\) được viết dưới dạng số thập phân hữu hạn thì 7 chia hết cho 3 và n chia hết cho 2 hoặc 5, vô lý vì 7 không chia hết cho 3
=> điều giả sử là sai
Chứng tỏ \(\frac{21n+7}{3n}\) không thể viết được dưới dạng số thập phân hữu hạn
Chứng tỏ rằng: \(\frac{21n+4}{7n}\)không thể viết được dưới dạng số thập phân hữu hạn.
Chứng tỏ rằng số 21n+4/7n (với n thuộc Z) không thể viết được dưới dạng số thập phân hữu hạn.
Ta có : 21n chia hết cho 7 , 4 không chia hết cho 7 do đó (21n + 4) chia hết cho 7, 7n chia hết cho 7 Từ 21n + 4 không chia hết cho 7,mẫu 7n chia hết cho 7 nên đến khi phân số có thể viết dưới dạng số thập phân vô hạn. Vậy phân số trên không thể viết được stp hữu hạn.
ai
k mình đúng
mình hứa k lại
Chứng tỏ rằng số các biểu thức sau không thể viết được dưới dạng số thập phân hữu hạn.
\(A=\frac{15n+5}{12}\)
\(B=\frac{33n+7}{22}\)
Ta có : 12 = 2\(^2\). 3 và 22 = 2 . 11
Vì trong 2 số trên đều có số nguyên tố khác 2 và 5
\(\Rightarrow\)A và B ko thể viết được dưới dạng số thập phân hữu hạn
Cho n thuộc N*.Chứng tỏ rằng phân số\(\frac{12n+5}{3n}\)không thể viết được dưới dạng số thập phân hữa hạn.
Vì có có 3 ở mẫu số , không thuộc 2 thừa số nguyên tố 2 và 5 nên không viết đc dưới dạng số thập phân hữu hạn
\(\frac{12n+5}{3n}\)
Ta có: \(3n\in B\left(3\right)\left(n\inℕ^∗\right)\)
Suy ra 3n chia hết cho 3 hay n có ước nguyên tố 3
\(\Rightarrowđpcm\)
Cho \(M=\frac{\left[1,\left(32\right)+5,\left(67\right)\right].n+1,\left(9\right)}{14}\left(n\inℕ^∗\right)\) chứng tỏ rằng không thể viết M dưới dạng số thập phân hữu hạn
Chứng tỏ rằng : \(\frac{21n+4}{7n}\) không thể viết đc dưới dạng số thập phân hữa hạn
*Chứng minh rằng : 21n + 4 / 7n không thể viết được dưới dạng số thập phân hữu hạn.
Chứng minh rằng:
39n+124/13n không thể viết được dưới dạng số thập phân hữu hạn