Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 8 2019 lúc 14:50

Giải bài 10 trang 54 sgk Hình học 11 | Để học tốt Toán 11

a) SM, CD cùng thuộc (SCD) và không song song.

Gọi N là giao điểm của SM và CD.

⇒ N ∈ CD và N ∈ SM

Mà SM ⊂ (SMB)

⇒ N ∈ (SMB)

⇒ N = (SMB) ∩ CD.

b) N ∈ CD ⊂ (ABCD)

⇒ BN ⊂ (ABCD)

⇒ AC; BN cùng nằm trong (ABCD) và không song song

Gọi giao điểm của AC và BN là H.

+ H ∈ AC ⊂ (SAC)

+ H ∈ BN ⊂ (SBM)

⇒ H ∈ (SAC) ∩ (SBM)

Dễ dàng nhận thấy giao điểm thứ hai của (SAC) và (SBM) là S

⇒ (SAC) ∩ (SBM) = SH.

c) Trong mp(SBM), gọi giao điểm của BM và SH là I, ta có:

I ∈ BM

I ∈ SH ⊂ (SAC).

 

⇒ I = BM ∩ (SAC).

) Trong mp(SAC), gọi giao điểm của AI và SC là P.

+ P ∈ AI, mà AI ⊂ (AMB) ⇒ P ∈ (AMB)

⇒ P = (AMB) ∩ SC.

Lại có P ∈ SC, mà SC ⊂ (SCD) ⇒ P ∈ (SCD).

⇒ P ∈ (AMB) ∩ (SCD).

Lại có: M ∈ (SCD) (gt)

⇒ M ∈ (MAB) ∩ (SCD)

Vậy giao điểm của (MAB) và (SCD) là đường thẳng MP.

Trần Văn Thành
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
qwerty
31 tháng 3 2017 lúc 10:02

a) Trong (SCD) kéo dài SM cắt CD tại N, Chứng minh N thuộc (SBM)

b) (SBM) ≡ (SBN). Giao tuyến cần tìm là SO

c) Trong (SBN) ta có MB giao SO tại I

d) Trong (ABCD) , ta có AB giao CD tại K, Trong (SCD), ta có KQ giao SC tại P

Từ đó suy ra được giao tuyến của hai mặt phẳng (SCD) và (ABM) là KQ.

Mai Anh
Xem chi tiết
Mai Anh
Xem chi tiết
Ngô Chí Thành
Xem chi tiết
Hoàng Tử Hà
10 tháng 12 2020 lúc 19:41

a/ Kéo dài SM cắt CD ở N

\(\left(SBM\right)\equiv\left(SBN\right)\)

\(\left(SBN\right)\cap\left(ABCD\right)=BN\)

\(BN\cap CD=\left\{N\right\}\Rightarrow CD\cap\left(SBM\right)=\left\{N\right\}\)

b/ Tương tự như câu a, ta sẽ tiếp tục sử dụng (SNB) bởi (SNB)=(SMB)

\(AC\cap BN=\left\{H\right\}\Rightarrow H=\left(SAC\right)\cap\left(SBN\right)\)

\(\Rightarrow\left(SAC\right)\cap\left(SBN\right)=SH\Rightarrow\left(SAC\right)\cap\left(SBM\right)=SH\)

c/ \(SH\cap BM=\left\{I\right\}\Rightarrow I=BM\cap\left(SAC\right)\)

d/ \(SC\subset\left(SCD\right)\)

\(AB\cap CD=\left\{K\right\}\Rightarrow\left(ABM\right)\cap\left(SCD\right)=MK\) (câu d luôn :v)

\(\Rightarrow MK\cap SC=\left\{P\right\}\Rightarrow P=\left(ABM\right)\cap SC\)

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 4 2019 lúc 7:39

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Ta có ngay S, M là hai điểm chung của (SBM) và (SCD) nên (SBM) ∩ (SCD) = SM

b) M là điểm chung thứ nhất của (AMB) và (SCD)

Gọi I = AB ∩ CD

Ta có: I ∈ AB ⇒ I ∈ (ABM)

Mặt khác: I ∈ CD ⇒ I ∈ (SCD)

Nên (AMB) ∩ (SCD) = IM.

c) Gọi J = IM ∩ SC.

Ta có: J ∈ SC ⇒ J ∈ (SAC) và J ∈ IM ⇒ J ∈ (ABM).

Hiển nhiên A ∈ (SAC) và A ∈ (ABM)

Vậy (SAC) ∩ (ABM) = AJ

Trần Văn Thành
Xem chi tiết
Nguyễn Ngọc Bảo Trâm
4 tháng 10 2016 lúc 20:22

Một câu hỏi quá dài , quá nhiều lại quá khó hiểu . Bạn chia thành từng bài đi cho giảm mệt!

Phan Bảo Ngọc
4 tháng 10 2016 lúc 20:16

hại não o_o

Kim Jisoo
16 tháng 12 2019 lúc 22:42

Mặc dù chưa tìm đc cách giải nhưng mk thấy vui vì bn là người đam mê học toán, học toán hết mk và trung thực. Bn sẽ thành công. Chúc bn học giỏi.

Khách vãng lai đã xóa
Trần Văn Thành
Xem chi tiết
KUDO SHINICHI
4 tháng 10 2016 lúc 16:26

cái này là toán lớp 1 là tớ chết liền

và sao dài vậy bạn

vừa lười + khó = ko làm