1/2.2/3.3/4.4/5....99/100
M=1/2.2/3.3/4.4/5.......99/100 .Cmr 1/15<M<1/110
Lời giải:
$M=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}....\frac{99}{100}$
$=\frac{1.2.3.4....99}{2.3.4...100}=\frac{1}{100}$
Hiển nhiên $\frac{1}{15}> \frac{1}{100}> \frac{1}{110}$ nên ta có đpcm.
** Sửa đề: CMR: $\frac{1}{15}> M> \frac{1}{110}$
A = 1+ 1/ 2.2 + 1 / 3.3 +1/ 4.4 + ....+1/99.99 + 1/ 100. 100
2/5<1/2.2+1/3.3+1/4.4+...+1/9.9<8/9
1/2.2 + 1/3.3 + 1/4.4 + ... + 1/9.9
> 1/2.3 + 1/3.4 + 1/4.5 + ... + 1/9.10
> 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/9 - 1/10
> 1/2 - 1/10
> 5/10 - 1/10
> 2/5 (1)
1/2.2 + 1/3.3 + 1/4.4 + ... + 1/9.9
< 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/8.9
< 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/8 - 1/9
< 1 - 1/9
< 8/9 (2)
Từ (1) và (2) => 2/5 < 1/2.2 + 1/3.3 + 1/4.4 + ... + 1/9.9 < 8/9
A=1+2.2!+3.3!+4.4!+...+100.100!
1/2.2+1/3.3+1/4.4+....+1/100.100<1
1/2.2 < 1/1.2
1/3.3 < 1/2.3
..................
1/100.100 < 1/99.100
=> <
Ta có: \(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+....+\frac{1}{100.100}=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}\)
Vì \(\frac{1}{2^2}<\frac{1}{1.2}\)
\(\frac{1}{3^2}<\frac{1}{2.3}\)
\(\frac{1}{4^2}<\frac{1}{3.4}\)
.....
\(\frac{1}{100^2}<\frac{1}{99.100}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}<\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}<1\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}<1\left(đpcm\right)\)
1/2.2 < 1/1.2
1/3.3 < 1/2.3
..................
1/100.100 < 1/99.100
=> <
tính : A= 1/2.2+1/3.3+1/4.4+...+1/9.9
B=2/3.3+2/5.5+2/7.7+...+2/2007.2007
C=1/4.4+1/6.6+1/8.8+...+1/2006.2006
1/2.2 + 1/3.3 + 1/4.4 +...+ 1/99.99 + 1/100.100
E= 1.1+2.2+3.3+...+50.50
F = 1.1+3.3+5.5+...+45.45
G=2.2+4.4+6.6+...+30.30
H=1.1+4.4+7.7+...+100.100
Giải Cụ thể ạ
Em đang cần gấp ạ
E=1.1+2.2+3.3+...+50.50
E= 1. ( 2-1) + 2. (3-1)+..+50.(51-1)
E=1.2-1.1+2.3-2.1+...+50.51-50.1
E=(1.2+2.3+...+50.51)-(1.1+2.1+...+50.1)
đặt là A đặt là B
xét A=1.2+2.3+...+50.51
3A=1.2.3+2.3.3+...+50.51.3
=1.2.3+2.3.4-1.2.3+..+50.51.52-49.50.51
=50.51.52
=132600
xét B= 1.1+1.2+...+50.1
B=1+2+3+...+50
số số hạng của A chính bằng số số hạng của dãy số tự nhiên liên tiếp cách đều 1 đơn vị từ 1 đến 50
số số hạng của A là 50:1+1=50 ( số hạng )
tổng A là (50+1).50:2=1275
thay vào E ta có
E=132600-1275
E=11925
vậy E=11925
đúng thì k
bài1 tìm n!:1.2.3......n.tính 1.1!+2.2!+3.3!+4.4!
bài2 tính tổng các số từ 100 đến 999
2)Từ 1 đến 999 có 999 số.
Vậy tổng các chữ số của số trên :(999+1).999:2=499500
1)
Trích:
Ta có : n.n! = [(n + 1) - 1].n! = (n + 1).n! - n! = 1.2.3.....n.(n + 1) - n! = (n + 1)! - n! => |
1.1!+2.2!+3.3!+4.4!+5.5! =(2-1).1!+(3-1).2!+(4-1).3!+ (5-1).4!+(6-1).5! =2!-1!+3!-2!+4!-3!+5!-4!+6!-5! =6!-1!=720-1=719 |
1.1!+2.2!+3.3!+4.4!+5.5!