P = \(\frac{x^2+2x}{2x+10}\)+ \(\frac{x-5}{x}\)+ \(\frac{50-5x}{2x^2+10}\)
a) tìm ĐKXĐ
b ) Rút gọn P
c) Tìm x để P =1
d ) Tìm x để P >1
cho biết : A= \(\left(\frac{1}{x+1}-\frac{3}{x^3+1}+\frac{3}{x^2-x+1}\right).\frac{3x^2-3x+3}{\left(x+1\right)\left(x+2\right)}-\frac{2x-2}{x+2}\)
a, tìm đkxđ của A và rút gọn A
b, tính giá trị của A khi x=3
c, tìm giá trị nguyên của x để A có giá trị nguyên
\(\left(\frac{1}{x+1}-\frac{3}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{3}{x^2-x+1}\right).\frac{3\left(x^2-x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x+1}\)
\(\left(\frac{x^2-x+1}{x^3+1}-\frac{3}{x^3+1}+\frac{3\left(x+1\right)}{x^3+1}\right).\frac{3\left(x^2-x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x+1}\)
\(\left(\frac{x^2-x+1-3+3x+3}{x^3+1}\right).\frac{3\left(x^2-x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x+1}\)
tới đây bạn biến đổi tiếp, gõ = cái này lâu quá, gõ mathtype nhanh hơn
Cho biểu thức : \(A=\frac{2x}{x+3}-\frac{x+1}{3-x}-\frac{3-11x}{x^2-9}\left(x\ne+-3\right)\)
a/ Rút gọn biểu thức A.
b/ Tìm x để A < 2.
c/ Tìm x nguyên để A nguyên
Giao luu
\(A=\frac{2x\left(x-3\right)+\left(x+3\right)\left(x+1\right)+\left(11x-3\right)}{\left(x+3\right)\left(x-3\right)}\)
\(A=\frac{2x^2-6x+x^2+4x+3+11x-3}{\left(x+3\right)\left(x-3\right)}=\frac{3x^2+9x}{\left(x+3\right)\left(x-3\right)}=\frac{3x}{x-3}\)
b)\(A=\frac{3x}{x-3}-2< 0\Leftrightarrow\frac{3x-2x+6}{x-3}=\frac{x+6}{x-3}=1+\frac{9}{x-3}\) \(-6< x< 3\)
c) x-3=U(9)=(-9,-3,-1,1,3,9)
x=(-6,0,2,4,6,12)
2/3 + 2/3 = 4/3
3/4 + 5/4 = 8/4 = 2
5/6 + 7/6 = 12/6 = 2
2/9 + 1/18 = 4/18 + 1/18 = 5/18
2/4 + 1 = 2/4 + 4/4 = 6/4 = 3/2
\(E=\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{\sqrt{x}+2\sqrt{x}+1}\right)\times\frac{x^2-2x+1}{2}\)
a,rút gọn
b,tình E khi x=0,16
c,tìm GTLN của E
d, tìm x để E âm
A= \(\left(\frac{x^2-2x}{2x^2+8}-\frac{2x^2}{8-4x+2x^2-x^3}\right)\left(1-\frac{1}{x}-\frac{2}{x^2}\right)\)
Rút gọn và tìm x thuộc z để A thuộc z
Cho P= 2/(2x+3) + 3/(2x+1) - (6x+5)/(2x-3)*(2x+3)
a) tìm điều kiện xác định
b) rút gọn
c) tìm x để P=-1
d) tìm x để P<0
A = \(\left(\frac{1}{x+1}-\frac{2}{x-1}-\frac{x+5}{1-x^2}\right):\frac{2x+1}{x^2-1}\)
a) Tìm tập xác định
b) Rút gọn A
c) x = ? để A < 0 , A > 0
\(a,ĐKXĐ:x\ne\pm1;x\ne-\frac{1}{2}\)
\(b,A=\left(\frac{1}{x+1}-\frac{2}{x-1}-\frac{x+5}{1-x^2}\right):\frac{2x+1}{x^2-1}\)
\(A=\left[\frac{x-1}{\left(x+1\right)\left(x-1\right)}-\frac{2\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}+\frac{x+5}{\left(x+1\right)\left(x-1\right)}\right]:\frac{2x+1}{\left(x+1\right)\left(x-1\right)}\)
\(A=\left[\frac{x-1-2x-2+x+5}{\left(x+1\right)\left(x-1\right)}\right]:\frac{2x+1}{\left(x+1\right)\left(x-1\right)}\)
\(A=\frac{2}{\left(x+1\right)\left(x-1\right)}.\frac{\left(x+1\right)\left(x-1\right)}{2x+1}\)
\(A=\frac{2}{2x+1}\)
\(c,Để:A>0\)
\(\Rightarrow2x+1>0\)
\(\Rightarrow x>-\frac{1}{2}\)
\(Để:A< 0\)
\(\Rightarrow2x+1< 0\)
\(\Rightarrow x< -\frac{1}{2}\)
Vậy \(x>-\frac{1}{2}\) và \(x\ne1\) thì A>0
\(x< -\frac{1}{2}\) và \(x\ne-1\) thì A<0
a)\(ĐK:x\ne-1;x\ne1;x\ne-\frac{1}{2}\)
b) \(A=\left(\frac{1}{x+1}-\frac{2}{x-1}-\frac{x+5}{1-x^2}\right):\frac{2x+1}{x^2-1}\)
\(=\left[\frac{x-1-\left(x+1\right)+x+5}{x^2-1}\right]\cdot\frac{x^2-1}{2x+1}\)
\(=\frac{x-1-x-1+x+5}{x^2-1}\cdot\frac{x^2-1}{2x+1}\)
\(=\frac{x+3}{2x+1}\)
A=\(x-\frac{2x-2\sqrt{x}}{\sqrt{x-1}}+\frac{x\sqrt{x}+1}{x-\sqrt{x}+1}+1\)
a, rút gọn A
b, tìm x để A<\(\frac{-1}{3}\)
Bạn xem lại đề nhé là \(\sqrt{x-1}\)hay \(\sqrt{x}-1\)
A=\(x-\frac{2x-2\sqrt{x}}{\sqrt{x}-1}+\frac{x\sqrt{x}+1}{x-\sqrt{x}+1}+1\)
a, rút gọn A
b, tìm x để A\(\le\frac{-1}{3}\)
A=\(x-\frac{2x-2\sqrt{x}}{\sqrt{x}-1}+\frac{x\sqrt{x}+1}{x-\sqrt{x}+1}+1\)
a, rút gọn A
b, tìm x để A<\(\frac{-1}{3}\)