tính tổng của A biết : 1*2+2*3+3*4+...+99*100
Tính tổng A biết:
A 1*2+2*3+3*4+...+99*100
A = 1 x 2 + 2 x 3 + 3 x 4 + ... + 99 x 100
3A = 1 x 2 x 3 + 2 x 3 x ( 4 - 1 ) + 3 x 4 x ( 5 - 2 ) + .... + 99 x 100 x ( 101 - 98 )
3A = 1 x 2 x 3 + 2 x 3 x 4 - 1 x 2 x 3 + ... + 99 x 100 x 101 - 98 x 99 x 100
3A = 99 x 100 x 101
3A = 999900
A = 999900 : 3
A = 333300
S = 1 x 2 + 2 x 3 + ... + 99 x 100
3S = 1 x 2 x 3 + 2 x 3 x (4 - 1) + ..... + 99 x 100 x (101 - 98)
3S = 1 x 2 x 3 + 2 x 3 x 4 - 1 x 2 x 3 + .... + 99 x 100 x 101 - 98 x 99 x 100
3S = 99 x 100 x 101 = 999900
S = 999900 : 3 = 333300
Tính tổng:
a) A= 1^2*2 + 2^2 *3 + 3^2*4 +...+ 99^2*100
b) B= 1*2^2 + 2*3^2 + 3*4^2 +...+ 99*100^2
c) C= 1^3 + 2^3 + 3^3 +...+ 99^3
Bài 1 :Tính tổng các số nguyên x, biết :
e) -20 < x < 21
f) -27 < x ≤ 27
g) | x | ≤ 3
h) 1 < | x | < 4
Bài 2: Tính tổng
a) 1 - 2 + 3 - 4 + . . . + 99 - 100
b) 1 + 2 - 3 - 4 + . . . . + 97 + 98 - 99 -100
Bài 1 :Tính tổng các số nguyên x, biết :
e) -20 < x < 21
f) -27 < x ≤ 27
g) | x | ≤ 3
h) 1 < | x | < 4
Bài 2: Tính tổng
a) 1 - 2 + 3 - 4 + . . . + 99 - 100
b) 1 + 2 - 3 - 4 + . . . . + 97 + 98 - 99 -100
1. Chứng tỏ rằng tổng 100 số đầu tiên của dãy sau nhỏ hơn 1/4:
1/5; 1/45;1/117;1/221;1/357;...
2.tính A/B biết:
A=1/1.300+1/2.301+1/3.302+...+1/101.400
B=1/1.102+1/2.103+...+1/299.400
3.
Chứng minh rằng; 100-(1+1/2+1/3+...+1/100)=1/2+2/3+...+99/100
4. Tính A/B biết : A=1/2+1/3+...+1/200
B=1/199+2/198+...+199/1
5. Tính: 1-1/2+1/3-1/4+...+1/99-1/100 phần 1/51+1/52+...+1/100
giúp mk nha, ai nhanh mk k cho!
1 tính tổng các số nguyên x biết
1/ -20<x<21
2/ -18 ≤ x ≤17
3/ -27 < x ≤ 27
4/ | x | ≤ 3
5/ | -x | <5
2 tính tổng
1/ 1+(-2)+3+(-4)+...+19+(-20)
2/ 1-2+3-4+...+99-100
3/ 2-4+6-8+...+48-50
4/ -1+3-5+7-....+97-99
5/ 1+2-3-4+....+97+98-99-100
tính tổng
a) 1 - 2 + 3 - 4 + ... + 99 - 100
b) 2 - 4 + 6 - 8 + ... + 48 - 50
c) -1 + 3 - 5 + 7 - ... + 97 - 99
d) 1 + 2 - 3 - 4 + ... + 97 + 98 - 99 -100
Tớ chỉ làm câu a thôi nhé !
a) 1-2+3-4+........+99-100 ( 100 số số hạng)
=(1-2)+(3-4)+........+(99-100) (50 cặp)
=(-1)+(-1)+............+(-1)
=(-1)*50
=(-50)
Dấu * có nghĩa là dấu nhân nhé !
Mình không chắc về đáp án này lắm đâu !
a)Bán áp dụng tính giao hoán sẽ ra kết quả nhanh chóng.
Ta sẽ giao hoán như sau:
1+ 3-2 + 5-4 + 7-6 + ... + 99-98 - 100 =
1 + (1 + 1 + 1 + 1 + 1 + ... + 1) - 100 =................(trong ngoặc có 49 số 1 vì 49 x 2 + 1 =99)
= 1 + 49 - 100 = âm 50.
Hoặc có cách này:
1 + 3 + 5 + ... + 97 + 99 - (2 + 4 + 6 + ... + 100) = - 50.
B1:tính tổng :
a, A= 1+2+3+4+......+99+100
b, B=4+7+10+13+......+301
B2:tính tổng của tất cả các số tự nhiên x ,bt x là số có 2 chữ số và 12<x<91
B3:tính tổng của các số tự nhiên a , biết a có 3 chữ số và 119<a<501
a, để tính tổng A = 1 + 2 + 3 + 4 + … + 99 + 100, ta áp dụng công thức tổng của dãy số từ 1 đến n: S = (n * (n + 1)) / 2.
Với n = 100, ta có: A = (100 * (100 + 1)) / 2 = 5050.
b, để tính tổng B = 4 + 7 + 10 + 13 + … + 301, ta nhận thấy các số trong dãy này tạo thành một cấp số cộng với công sai d = 3.
Ta có công thức tổng của cấp số cộng: S = (n/2) * (a + l), trong đó n là số phần tử, a là số đầu tiên, l là số cuối cùng.
Số đầu tiên a = 4, số cuối cùng l = 301, và công sai d = 3.
Số phần tử n = ((l - a) / d) + 1 = ((301 - 4) / 3) + 1 = 100.
Vậy tổng B = (100/2) * (4 + 301) = 50 * 305 = 15250.
B2, để tính tổng của tất cả các số tự nhiên x, biết x là số có 2 chữ số và 12 < x < 91, ta cần tính tổng các số từ 13 đến 90.
Áp dụng công thức tổng của dãy số từ a đến b: S = ((b - a + 1) * (a + b)) / 2.
Với a = 13 và b = 90, ta có: S = ((90 - 13 + 1) * (13 + 90)) / 2 = (78 * 103) / 2 = 4014.
B3, để tính tổng của tất cả các số tự nhiên a, biết a có 3 chữ số và 119 < a < 501, ta cần tính tổng các số từ 120 đến 500.
Áp dụng công thức tổng của dãy số từ a đến b: S = ((b - a + 1) * (a + b)) / 2.
Với a = 120 và b = 500, ta có: S = ((500 - 120 + 1) * (120 + 500)) / 2 = (381 * 620) / 2 = 118260.
Tính tổng:
\(A=1+3+3^2+3^3+...+3^{99}+3^{100}\)100
\(B=1-2+2^2-2^3+2^4-...-2^{99}+2^{100}\)
\(A=1+3+3^2+...+3^{100}\)
\(\Rightarrow3A=3+3^2+3^3+...+3^{101}\)
\(\Rightarrow3A-A=3^{101}-1\)
\(\Rightarrow A=\frac{3^{101}-1}{2}\)