Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quyết Tâm Chiến Thắng
Xem chi tiết
Kudo Shinichi
Xem chi tiết
alibaba nguyễn
28 tháng 12 2018 lúc 11:09

\(2y^2-x=2y-xy+3\)

\(\Leftrightarrow\left(y-1\right)\left(2y+x\right)=3\)

tran thu phuong
7 tháng 10 2019 lúc 12:49

2y^2-x=2y-xy+3
<=>2y^2-2y-x+xy=3
<=>2y(y-1)+x(y-1)=3
<=>(y-1)(2y+x)=3
=>y-1;2y+x thuộc ước của 3
tới đây bạn xét 4 TH là được nha

Chúc học tốt!

Sakura
Xem chi tiết
Nông Duy Khánh
Xem chi tiết
Phùng Gia Bảo
6 tháng 4 2020 lúc 19:28

PT \(\Leftrightarrow\left(y-5\right)x^2-\left(y-1\right)x+y-1=0\)

Với y=5 thì ta không tìm được x thỏa mãn

Với \(y\ne5\), ta có

\(\Delta=-3y^2+26-19\)

Để phương trình có nghiệm thì \(\Delta\ge0\Rightarrow1\le x\le7\)

Từ đó ta thế các giá trị của y vào phương trình tìm x (Bạn tự giải)

Khách vãng lai đã xóa
Nguyen Thi Thu Ha
Xem chi tiết
Nguyễn Hoàng Tiến
11 tháng 6 2016 lúc 12:51

\(x\left(1-y\right)+2y-3=0\)

\(x\left(1-y\right)+2y-2=1\)

\(x\left(1-y\right)+2\left(y-1\right)=1\)

\(\left(y-1\right)\left(2-x\right)=1\)

\(y-1;2-x\inƯ\left(1\right)\)

Maru Coldboy
Xem chi tiết
ngọc thịnh
Xem chi tiết
Ngô Bình
Xem chi tiết
Trần Minh Thúy
Xem chi tiết
Không Tên
12 tháng 2 2018 lúc 20:14

Bài 1:

                    \(x^2-8x+y^2+6y+25=0\)

\(\Leftrightarrow\)\(\left(x^2-8x+16\right)+\left(y^2+6y+9\right)=0\)

\(\Leftrightarrow\)\(\left(x-4\right)^2+\left(y+3\right)^2=0\)

\(\Leftrightarrow\)\(\hept{\begin{cases}x-4=0\\y+3=0\end{cases}}\)

\(\Leftrightarrow\)\(\hept{\begin{cases}x=4\\y=-3\end{cases}}\)

Vậy...

Bài 2: 

Phương trình có nghiệm duy nhất là    x = -2/3    nên ta có:

          \(\left(4+a\right).\frac{-2}{3}=a-2\)

\(\Leftrightarrow\)\(-\frac{8}{3}-\frac{2}{3}a=a-2\)

\(\Leftrightarrow\)\(a+\frac{2}{3}a=2-\frac{8}{3}\)

\(\Leftrightarrow\)\(\frac{5}{3}a=-\frac{2}{3}\)

\(\Leftrightarrow\)\(a=-\frac{2}{5}\)

Nguyễn Xuân Anh
27 tháng 2 2018 lúc 0:47

Bài 3:

\(A=a^4-2a^3+3a^2-4a+5\)

\(=a^3\left(a-1\right)-a^2\left(a-1\right)+2a\left(a-1\right)-2\left(a-1\right)+3\)

\(=\left(a-1\right)\left(a^3-a^2+2a-2\right)+3\)

\(=\left(a-1\right)\left[a^2\left(a-1\right)+2\left(a-1\right)\right]+3\)

\(=\left(a-1\right)^2\left(a^2+2\right)+3\ge3\)

\(\text{Vậy Min A=3. Dấu "=" xảy ra khi và chỉ khi }a-1=0\Leftrightarrow a=1\)

Bài 4:

\(xy-3x+2y=13\)

\(\Leftrightarrow x\left(y-3\right)+2\left(y-3\right)=7\)

\(\Leftrightarrow\left(x+2\right)\left(y-3\right)=7=1.7=7.1=-1.-7=-7.-1\)

x+2-7-117
y-3-1-771
x-9-3-15
y2-4104

Vậy...

Bài 5:

\(xy-x-3y=2\)

\(\Leftrightarrow x\left(y-1\right)-3\left(y-1\right)=5\)

\(\Leftrightarrow\left(x-3\right)\left(y-1\right)=5=1.5=5.1=-1.-5=-5.-1\)

x-3-5-115
y-1-1-551
x-2248
y0-462

Vậy....