\(P=\left(\frac{1}{1-\sqrt{a}}-\frac{1}{1+\sqrt{a}}\right):\frac{\sqrt{a}}{\sqrt{a}-1}\)
giúp mình bài này với
GIÚP MÌNH LÀM BÀI NÀY NHA !!
\(\left(\sqrt{ab}-\sqrt{\frac{a}{b}}+\frac{1}{4}\sqrt{ab}+\frac{1}{b}\sqrt{\frac{b}{a}}\right):\left(1+\frac{2}{a}-\frac{1}{b}+\frac{1}{ab}\right)\)VS a,b >=0
Cho biểu thức:
A= \(\frac{2}{3}.\left(\frac{1}{1+\left(\frac{2\sqrt{x}+1}{\sqrt{3}}\right)^2}+\frac{1}{1+\left(\frac{2\sqrt{x}-1}{\sqrt{3}}\right)^2}\right).\frac{2010}{x+1}\)
Rút gọn và tìm Max của A
Bạn nào giải giúp mình bài này với
ĐKXĐ : \(x\ge0\)
\(A=\frac{2}{3}.\frac{2+\left(\frac{2\sqrt{x}-1}{\sqrt{3}}\right)^2+\left(\frac{2\sqrt{x}+1}{\sqrt{3}}\right)^2}{\left[1+\left(\frac{2\sqrt{x}+1}{\sqrt{3}}\right)^2\right]\left[1+\left(\frac{2\sqrt{x}-1}{\sqrt{3}}\right)^2\right]}.\frac{2010}{x+1}\)
\(A=\frac{2}{3}.\frac{2+\left(\frac{2\sqrt{x}-1}{\sqrt{3}}+\frac{2\sqrt{x}+1}{\sqrt{3}}\right)^2-2\left(\frac{2\sqrt{x}-1}{\sqrt{3}}\right)\left(\frac{2\sqrt{x}+1}{\sqrt{3}}\right)}{\left[1+\frac{\left(2\sqrt{x}+1\right)^2}{3}\right]\left[1+\frac{\left(2\sqrt{x}-1\right)^2}{3}\right]}.\frac{2010}{x+1}\)
\(A=\frac{2}{3}.\frac{2+\left(\frac{4\sqrt{x}}{\sqrt{3}}\right)^2-\frac{2\left(2\sqrt{x}-1\right)\left(2\sqrt{x}+1\right)}{3}}{\left(\frac{4x+4\sqrt{x}+4}{3}\right)\left(\frac{4x-4\sqrt{x}+4}{3}\right)}.\frac{2010}{x+1}\)
\(A=\frac{2}{3}.\frac{2+\frac{16x}{3}-\frac{2\left(4x-1\right)}{3}}{\frac{16\left(x+1+\sqrt{x}\right)\left(x+1-\sqrt{x}\right)}{9}}.\frac{2010}{x+1}\)
\(A=\frac{2}{3}.\frac{\frac{6+16x-8x+2}{3}}{\frac{16\left(x+1\right)^2-16x}{9}}.\frac{2010}{x+1}\)
\(A=\frac{x+1}{x^2+x+1}.\frac{2010}{x+1}=\frac{2010}{x^2+x+1}\le2010\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=0\)
...
Ta có : \(x^2+x+1\ge1\)vì \(x\ge0\)
Nên \(M=\frac{2020}{x^2+x+1}\le\frac{2020}{1}=2020\)
Vậy Max của M là 2020 khi x = 0
\(\left(\frac{1}{\sqrt{a}+\sqrt{a+1}}+\frac{1}{\sqrt{a}-\sqrt{a-1}}\right):\left(1+\sqrt{\frac{a+1}{a-1}}\right)\)
\(\left(\frac{\left(\sqrt{a}+1\right)\left(a-\sqrt{ab}\right)\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a^3}+3\right)\left(a-b\right)}\right)\)
Rút gọn 2 biểu thức trên?
Ai giúp mình với, tks nhiều
mi tích tau tau tích mi xong tau trả lời nka
việt nam nói là làm
Cho \(Q=\left(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\frac{1-a}{\sqrt{1-a^2}-1+a}\right)\left(\sqrt{\frac{1}{a^2}-1}-\frac{1}{a}\right)\sqrt{a^2-2a+1}\left(ĐK:0< a< 1\right)\)
a, Rút gọn Q ( câu này viết kq với hướng làm thôi cũng được !)
b, so sánh Q với Q3
Giúp mình với !!! UHUHUHU
a) ĐK: \(0< a< 1\)
\(Q=\left(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\frac{1-a}{\sqrt{1-a^2}-1+a}\right)\left(\sqrt{\frac{1}{a^2}-1}-\frac{1}{a}\right)\sqrt{a^2-2a+1}\)
\(=\left(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\frac{1-a}{\sqrt{1-a}\left(\sqrt{1+a}-\sqrt{1-a}\right)}\right)\left(\frac{\sqrt{1-a^2}}{a}-\frac{1}{a}\right).\sqrt{\left(1-a\right)^2}\)
\(=\left(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\frac{\sqrt{1-a}}{\sqrt{1+a}-\sqrt{1-a}}\right).\frac{\sqrt{1-a^2}-1}{a}.\left(1-a\right)\)
\(=\frac{\left(\sqrt{1+a}+\sqrt{1-a}\right)^2}{\left(\sqrt{1+a}-\sqrt{1-a}\right)\left(\sqrt{1+a}+\sqrt{1-a}\right)}.\frac{\sqrt{1-a^2}-1}{a}.\left(1-a\right)\)
\(=\frac{2+2\sqrt{1-a^2}}{2a}.\frac{\sqrt{1-a^2}-1}{a}.\left(1-a\right)\)
\(=\frac{\sqrt{1-a^2}+1}{a}.\frac{\sqrt{1-a^2}-1}{a}.\left(1-a\right)\)
\(=\frac{-a^2\left(1-a\right)}{a^2}=a-1\)
\(Q=\left(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\frac{1-a}{\sqrt{1-a^2}-1+a}\right)\left(\sqrt{\frac{1}{a^2}-1}-\frac{1}{a}\right)\sqrt{a^2-2a+1}\)
\(=\left(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\frac{1-a}{\sqrt{1-a}\left(\sqrt{1+a}-\sqrt{1-a}\right)}\right)\left(\frac{\sqrt{1-a^2}}{a}-\frac{1}{a}\right).\sqrt{\left(1-a\right)^2}\)
\(=\left(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\frac{\sqrt{1-a}}{\sqrt{1+a}-\sqrt{1-a}}\right).\frac{\sqrt{1-a^2}-1}{a}.\left(1-a\right)\)
\(=\frac{\sqrt{1+a}+\sqrt{1-a}}{\sqrt{1+a}-\sqrt{1-a}}.\frac{\sqrt{1-a^2}-1}{a}.\left(1-a\right)\)
\(=\frac{2+2\sqrt{1-a^2}}{2a}.\frac{\sqrt{1-a^2}-1}{a}.\left(1-a\right)\)
\(=\frac{\sqrt{1-a^2}+1}{a}.\frac{\sqrt{1-a^2}-1}{a}.\left(1-a\right)\)
\(=\frac{-a^2\left(1-a\right)}{a^2}=a-1\)
b) Xét: \(Q^3-Q=\left(a-1\right)^3-\left(a-1\right)=\left(a-1\right)^2\left(a-1-1\right)=\left(a-1\right)^2\left(a-2\right)\)
Do \(a< 1\)=> \(a-2< 0\) và \(a-1< 0\)
nên \(\left(a-1\right)^2\left(a-2\right)< 0\)
=> \(Q^3-Q< 0\)
<=> \(Q^3< Q\)
xin lỗi nhé, câu b mk sai, sửa lại:
\(Q^3-A=\left(a-1\right)^3-\left(a-1\right)=\left(a-1\right)\left[\left(a-1\right)^2-1\right]\)
\(=\left(a-1\right)\left(a-1-1\right)\left(a-1+1\right)=\left(a-2\right)\left(a-1\right)a\)
Do \(0< a< 1\)nên \(a-2< 0;\)\(a-1< 0\)
=> \(\left(a-2\right)\left(a-1\right)a>0\)
=> \(Q^3-Q>0\)
<=> \(Q^3>Q\)
\(M=\left(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{a-2\sqrt{a}+1}\) với a>0 và a khác 0
Mọi người giúp mình giải câu này với
mai mình kiểm tra rồi T.T
Hầu hết các dạng bài này bạn chỉ cần quy đồng là ra ngay nhé :)
Điều kiện xác định : \(0< x\ne1\)
\(M=\left(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{a-2\sqrt{a}+1}=\frac{1+\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)^2}\)
\(=\frac{1+\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}.\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}=\frac{\sqrt{a}-1}{\sqrt{a}}\)
Ta có : \(M=\left(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{a-2\sqrt{a}+1}\)
\(M=\left(\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)^2}\)
\(M=\frac{1+\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}.\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}\)
\(M=\frac{\sqrt{a}-1}{\sqrt{a}}\)
\(M=1-\frac{1}{\sqrt{a}}\)
Rút gọn:
P = \(\frac{\sqrt{a-2}-2}{3}\cdot\left(\frac{\sqrt{a-2}}{3+\sqrt{a-2}}+\frac{a+7}{11-a}\right):\left(\frac{3\sqrt{a-2}+1}{a-3\sqrt{a-2}-2}-\frac{1}{\sqrt{a-2}}\right)\)
Mình nghĩ bài này đặt x = a - 2.Giúp mik vs mik trả tick đầy đủ
Đặt x=a-2,ta có : \(P=\frac{\sqrt{x}-2}{3}.\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{x+9}{9-x}\right):\left(\frac{3\sqrt{x}+1}{x-3\sqrt{x}}-\frac{1}{\sqrt{x}}\right)\)
\(=\frac{\sqrt{x}-2}{3}.\left(\frac{\sqrt{x}\left(3-\sqrt{x}\right)+x+9}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\right):\left(\frac{3\sqrt{x}+1-\left(\sqrt{x}-3\right)}{\sqrt{x}\left(\sqrt{x}-3\right)}\right)\)
\(=\frac{\sqrt{x}-2}{3}.\left(\frac{3\left(\sqrt{x}+3\right)}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\right):\left(\frac{2\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}-3\right)}\right)\)
\(=\frac{\sqrt{x}-2}{3}.\frac{3}{3-\sqrt{x}}.\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\left(\sqrt{x}+2\right)}\)
\(=\frac{-\sqrt{x}\left(\sqrt{x}-2\right)}{2\left(\sqrt{x}+2\right)}\)
Giúp mình nhé, mình đang càn gấp :<<<
a) \(\left(1+\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)\left(1-\frac{a+\sqrt{a}}{1+\sqrt{a}}\right)\)
b) \(\left(2-\frac{a-3\sqrt{a}}{\sqrt{a}-3}\right)\left(2-\frac{5\sqrt{a}-\sqrt{ab}}{\sqrt{b}-5}\right)\)
c) \(\left(3+\frac{a-2\sqrt{a}}{\sqrt{a}-2}\right)\left(3-\frac{3a+\sqrt{a}}{3\sqrt{a}+1}\right)\)
d) \(\left(\frac{a-\sqrt{a}}{\sqrt{a}-1}+2\right)\left(2-\frac{\sqrt{a}+a}{1+\sqrt{a}}\right)\)
\(a,\left(1+\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)\left(1-\frac{a+\sqrt{a}}{1+\sqrt{a}}\right)=\left(1+\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)\left(1-\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right)\)
\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)=1^2-\sqrt{a}^2=1-a\)
\(b,\left(2-\frac{a-3\sqrt{a}}{\sqrt{a}-3}\right)\left(2-\frac{5\sqrt{a}-\sqrt{ab}}{\sqrt{b}-5}\right)=\left(2-\frac{\sqrt{a}\left(\sqrt{a}-3\right)}{\sqrt{a}-3}\right)\left(2-\frac{-\sqrt{a}\left(\sqrt{b}-5\right)}{\sqrt{b}-5}\right)\)
\(=\left(2-\sqrt{a}\right)\left(2+\sqrt{a}\right)=2^2-\sqrt{a}^2=2-a\)
\(c,\left(3+\frac{a-2\sqrt{a}}{\sqrt{a}-2}\right)\left(3-\frac{3a+\sqrt{a}}{3\sqrt{a}+1}\right)=\left(3+\frac{\sqrt{a}\left(\sqrt{a}-2\right)}{\sqrt{a}-2}\right)\left(3-\frac{\sqrt{a}\left(3\sqrt{a}+1\right)}{3\sqrt{a}+1}\right)\)
\(=\left(3+\sqrt{a}\right)\left(3-\sqrt{a}\right)=3^2-\sqrt{a}^2=3-a\)
\(d,\left(\frac{a-\sqrt{a}}{\sqrt{a}-1}+2\right)\left(2-\frac{\sqrt{a}+a}{1+\sqrt{a}}\right)=\left(\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}+2\right)\left(2-\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right)\)
\(=\left(\sqrt{a}+2\right)\left(2-\sqrt{a}\right)=2^2-\sqrt{a}^2=2-a\)
Các bạn giúp mình các bài này nha.
1. Tính:
a.\(\sqrt{\frac{3-\sqrt{5}}{3+\sqrt{5}}}\sqrt{\frac{4\sqrt{5}+8}{\sqrt{5}-2}}\)
b.\(\left(1+\frac{\sqrt{3}}{2}\right)\left(1-\frac{\sqrt{3}}{2}\right)-\left(1-\frac{\sqrt{3}}{2}\right)\left(1+\sqrt{1+\frac{\sqrt{3}}{2}}\right)\)
2.Tính giá trị nhỏ nhất:
\(-\sqrt{x}+x\)
3. Tính giá trị lớn nhất:
\(\sqrt{x}-x\)
Các bạn làm được bài này thì làm giúp mình nha. Mình bí quá
Tiếc quá
mình chưa học đến
bik thì giúp cho
Giúp mình làm bài này với
Bài 1: Tính
A=\(\sqrt{\frac{5+2\sqrt{6}}{5-2\sqrt{6}}}+\sqrt{\frac{5-2\sqrt{6}}{5+2\sqrt{6}}}\)
B=\(\frac{\sqrt{2+\sqrt{3}}}{2}\div\left(\frac{\sqrt{2+\sqrt{3}}}{2}-\frac{2}{\sqrt{6}}+\frac{\sqrt{2+\sqrt{3}}}{2\sqrt{3}}\right)\)
C=\(\frac{1}{\sqrt{2}+2}+\frac{1}{2\sqrt{3}+3\sqrt{2}}+...+\frac{1}{99\sqrt{100}+100\sqrt{99}}\)
Bài 2: Giải phương trình:
a. \(\sqrt{4x-20}+\sqrt{x-5}-\frac{1}{3}\sqrt{9x-45}=4\)
b.\(\frac{2\sqrt{x}-7}{3}=\sqrt{x}-1\)
c.\(5\sqrt{x-1}-\sqrt{36x-36}-\sqrt{9x-9}=\sqrt{8x+12}\)
Bài 3: Rút gọn
\(M=\left(\frac{\sqrt{a}}{2}-\frac{1}{2\sqrt{a}}\right)^2\times\left(\frac{\sqrt{a}-1}{\sqrt{a}+1}-\frac{\sqrt{a}+1}{\sqrt{a-1}}\right)\)
a. Tìm a để M>0
b. Tìm a để M<0