giải phương trình:
\(\sqrt{2011-x^2}-\sqrt{2006-x^2}=2\)
Giải phương trình:
\(\sqrt{2011-x^2}-\sqrt{2006-x^2}=2\)
Help me!!!
giải phương trình
\(x^2+\sqrt{x+2011}=2011\)
Đặt \(\sqrt{x+2011}=a\)
ta có \(x^2=2011-a\)
\(a^2=x+2011\)
=> ta có hệ phương trình :
\(\hept{\begin{cases}x^2=2011-a\\a^2=x+2011\end{cases}}\Rightarrow x^2-a^2=-\left(a+x\right)\)
\(\Leftrightarrow\left(x+a\right)\left(x-a+1\right)=0\)
\(\orbr{\begin{cases}x=-a\\x=a-1\end{cases}}\)
tự giải nốt nha
ĐKXĐ : x+2011 >= 0 <=> x > -2011
pt <=> (x^2+x+1/4) = (x+2011)-\(\sqrt{x+2011}\)+1/4
<=> (x+1/2)^2 = \(\left(\sqrt{x+2011}-\frac{1}{2}\right)^2\)
Đến đó bạn tự làm nha !
a) Giải Phương trình: \(\frac{\sqrt{x-2009}-1}{x-2009}+\frac{\sqrt{y-2010}-1}{y-2010}+\frac{\sqrt{z-2011}-1}{z-2011}=\frac{3}{4}\)
b) Giải Phương Trình: \(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\)
Giúp mình nha.......
a) ĐK: \(x>2009;y>2010;z>2011\)
\(\Leftrightarrow\frac{\sqrt{x-2009}-1}{x-2009}-\frac{1}{4}+\frac{\sqrt{y-2010}-1}{y-2010}-\frac{1}{4}+\frac{\sqrt{z-2011}-1}{z-2011}-\frac{1}{4}=0\)
\(\Leftrightarrow\frac{-\left(\sqrt{x-2009}-2\right)^2}{4\left(x-2009\right)}+\frac{-\left(\sqrt{y-2010}-2\right)^2}{4\left(y-2010\right)}+\frac{-\left(\sqrt{z-2011}-2\right)^2}{4\left(z-2011\right)}=0\left(1\right)\)
Dễ thấy với đkxđ thì \(VT\left(1\right)\le0\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\sqrt{x-2009}=2\\\sqrt{y-2010}=2\\\sqrt{z-2011}=2\end{cases}\Leftrightarrow\hept{\begin{cases}x=2013\\y=2014\\z=2015\end{cases}\left(tm\right)}}\)
\(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\)(*)
\(ĐK:\orbr{\begin{cases}x\ge3\\x\le-3\end{cases}}\)
(*)\(\Leftrightarrow\sqrt{\left(x+3\right)\left(x-3\right)}+\sqrt{\left(x-3\right)^2}=0\)
\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}+\sqrt{x-3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\left(tm\right)\\\sqrt{x+3}+\sqrt{x-3}=0\end{cases}}\)
Xét phương trình\(\sqrt{x+3}+\sqrt{x-3}=0\)(**) có \(\sqrt{x+3}\ge0;\sqrt{x-3}\ge0\)nên (**) xảy ra khi \(\hept{\begin{cases}\sqrt{x+3}=0\\\sqrt{x-3}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\x=3\end{cases}}\left(L\right)\)
Vậy phương trình có một nghiệm duy nhất là 3
a. ĐK : x > 2009 ; y > 2010 ; z > 2011
Pt <=> \(\frac{1-\sqrt{x-2009}}{x-2009}+\frac{1-\sqrt{y-2010}}{y-2010}+\frac{1-\sqrt{z-2011}}{z-2011}=-\frac{3}{4}\)
\(\Leftrightarrow\left(\frac{1}{x-2009}-\frac{1}{\sqrt{x-2009}}+\frac{1}{4}\right)+\left(\frac{1}{y-2010}-\frac{1}{\sqrt{y-2010}}+\frac{1}{4}\right)\)
\(\left(\frac{1}{z-2011}-\frac{1}{\sqrt{z-2011}}+\frac{1}{4}\right)=0\)
\(\Leftrightarrow\left(\frac{1}{\sqrt{x-2009}}-\frac{1}{2}\right)^2+\left(\frac{1}{\sqrt{y-2010}}-\frac{1}{2}\right)^2+\left(\frac{1}{\sqrt{z-2011}}-\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(\frac{1}{\sqrt{x-2009}}-\frac{1}{2}\right)^2=0\\\left(\frac{1}{\sqrt{y-2010}}-\frac{1}{2}\right)^2=0\\\left(\frac{1}{\sqrt{z-2011}}-\frac{1}{2}\right)^2=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\frac{1}{\sqrt{x-2009}}=\frac{1}{2}\\\frac{1}{\sqrt{y-2010}}=\frac{1}{2}\\\frac{1}{\sqrt{z-2011}}=\frac{1}{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-2009}=2\\\sqrt{y-2010}=2\\\sqrt{z-2011}=2\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=2013\\y=2014\\z=2015\end{cases}}\)( tmđk )
b. ĐK : x2 - 9 \(\ge\)0 <=> x2\(\ge\)9 <=> - 3\(\le\)x\(\le\)3
\(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\)
\(\Leftrightarrow\sqrt{\left(x-3\right)\left(x+3\right)}+\sqrt{\left(x-3\right)^2}=0\)
\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}+\sqrt{x-3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-3}=0\\\sqrt{x+3}+\sqrt{x-3}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\left(tmdk\right)\\\sqrt{x+3}+\sqrt{x-3}=0\end{cases}}\)
TH :\(\sqrt{x+3}+\sqrt{x-3}=0\)
Vì \(\sqrt{x+3}+\sqrt{x-3}\ge0\forall x\). Dấu "=" xảy ra <=> \(\Leftrightarrow\orbr{\begin{cases}\sqrt{x+3}=0\\\sqrt{x-3}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=3\end{cases}}\)( mâu thuẫn )
Vậy pt có nghiệm duy nhất là x = 3
giải phương trình :\(2006x^4+x^4\sqrt{x^2+2006}+x^2=2005.2006\)
giải phương trình \(\sqrt{x-29}+2\sqrt{y-6}+3\sqrt{z-2011}+1016=\frac{x+y+z}{2}\)
\(x+y+z=2\sqrt{x-29}+4\sqrt{y-6}+6\sqrt{z-2011}+2032\)
<=>\(\left(x-29\right)-2\sqrt{x-29\cdot}+1+\left(y-6\right)-4\sqrt{y-6}+4+\left(z-2011\right)-6\sqrt{z-2011}+9=0\)
<=>\(\left(\sqrt{x-29}-1\right)^2+\left(\sqrt{y-6}-2\right)^2+\left(\sqrt{z-2011}-3\right)^2=0\)
cho 3 cái =0 là ra
nhân 2 lên rồi rút về hằng đẳng thức là xong bạn ak cần mk giải ra ko
pt <=> \(2\sqrt{x-29}+4\sqrt{y-6}+6\sqrt{z-2011}+2032=x+y+z\)
<=> \(x-29-2\sqrt{x-29}+1+y-6-4\sqrt{y-6}+4+z-2011-6\sqrt{z-2011}+9-2032=0\)
== đề sai à
\(\sqrt{2011-x^2}+\sqrt{2006-x^2}=2\)
giải phương trình
a. \(\sqrt{x-1}+\sqrt{x+3}+2\sqrt{\left(x-1\right)\left(x^2-3x+5\right)}=4-2x\)
b.\(\sqrt{x-2010}+\sqrt{y-2011}+\sqrt{x+2012}=\frac{1}{2}\left(x+y+z\right)-300\)
Giải phương trình:
\(x^4+x^4\sqrt{2006+x^2}+x^2=2005.2006\)
\(Helpme!\)