chứng minh
a) 1/3^2+2/3^3+3/3^4+...+100/3^101<1/4
b) 1/3-2/3^2+3/3^3-4/3^4+...+99/3^99-100/3^100<3/16
c) 1/31+1/32+...+1/60=1/1x2+1/3x4+1/5x6+...+1/59x60
d) 1x3x5x7x...x49=26/2x27/2x28/2x...x50/2
chứng minhA=1/2-2/2^2+3/2^3-4/2^4+...+99/2^99-100/2^100<2/9
Chứng minh rằng: 1/3+2/3^2+3/3^3+4/3^4+..................+100/3^100+101/3^101<3/4
\(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{101}{3^{101}}\) (1)
\(\Rightarrow\frac{1}{3}A=\frac{1}{3^2}+\frac{2}{3^3}+\frac{3}{3^4}+...+\frac{100}{3^{101}}+\frac{101}{3^{102}}\) (2)
Trừ (1) cho (2):
\(\frac{2}{3}A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{101}}-\frac{101}{3^{102}}=B-\frac{101}{3^{102}}\)
\(B=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{101}}\)
\(\Rightarrow\frac{1}{3}B=\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{101}}+\frac{1}{3^{102}}\)
\(\Rightarrow\frac{1}{3}B+\frac{1}{3}-\frac{1}{3^{102}}=\frac{1}{3}+\frac{1}{3^2}+..+\frac{1}{3^{101}}=B\)
\(\Rightarrow\frac{2}{3}B=\frac{1}{3}-\frac{1}{3^{102}}\Rightarrow B=\frac{1}{2}\left(1-\frac{1}{3^{101}}\right)=\frac{1}{2}-\frac{1}{2.3^{101}}\Rightarrow B< \frac{1}{2}\)
\(\Rightarrow A=\frac{3}{2}\left(B-\frac{101}{3^{102}}\right)< \frac{3}{2}B< \frac{3}{2}.\frac{1}{2}=\frac{3}{4}\)
Chứng minh rằng: A=1/3+2/3^2+3/3^3+...+100/3^100+101/3^101<3/4
Ai giải chi tiết mình mới tick cho
Ta có:
\(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}+\frac{101}{3^{101}}\)
\(\Rightarrow3\cdot A=3\cdot\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}+\frac{101}{3^{101}}\right)\)
\(\Rightarrow3\cdot A=3\cdot\frac{1}{3}+3\cdot\frac{2}{3^2}+3\cdot\frac{3}{3^3}+...+3\cdot\frac{100}{3^{100}}+3\cdot\frac{101}{3^{101}}\)
\(\Rightarrow3\cdot A=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}+\frac{101}{3^{100}}\)
\(\Rightarrow3\cdot A-A=\left(1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}+\frac{101}{3^{100}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}+\frac{101}{3^{101}}\right)\)
\(\Rightarrow2\cdot A=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}+\frac{101}{3^{100}}-\frac{1}{3}-\frac{2}{3^2}-\frac{3}{3^3}-...-\frac{100}{3^{100}}-\frac{101}{3^{101}}\)
\(\Rightarrow2\cdot A=1+\left(\frac{2}{3}-\frac{1}{3}\right)+\left(\frac{3}{3^2}-\frac{2}{3^2}\right)+...+\left(\frac{101}{3^{100}}-\frac{100}{3^{100}}\right)-\frac{101}{3^{101}}\)
\(\Rightarrow2\cdot A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}-\frac{101}{3^{101}}\)
Khi đặt \(S=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}\) thì ta sẽ có 2 điều:
- Điều 1: Khi đó:
\(2\cdot A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}-\frac{101}{3^{101}}\)
\(\Rightarrow2\cdot A=S-\frac{101}{3^{101}}\)
\(\Rightarrow2\cdot A< S\) ( 1 )
Điều 2: Khi đó:
\(S=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}\)
\(\Rightarrow3\cdot S=3\cdot\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}\right)\)
\(\Rightarrow3\cdot S=3\cdot1+3\cdot\frac{1}{3}+3\cdot\frac{1}{3^2}+...+3\cdot\frac{1}{3^{100}}\)
\(\Rightarrow3\cdot S=3+1+\frac{1}{3}+...+\frac{1}{3^{99}}\)
\(\Rightarrow3\cdot S-S=\left(3+1+\frac{1}{3}+...+\frac{1}{3^{99}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}\right)\)
\(\Rightarrow2\cdot S=3+1+\frac{1}{3}+...+\frac{1}{3^{99}}-1-\frac{1}{3}-\frac{1}{3^2}-...-\frac{1}{3^{100}}\)
\(\Rightarrow2\cdot S=3+\left(1-1\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{3^2}-\frac{1}{3^2}\right)+...+\left(\frac{1}{3^{99}}-\frac{1}{3^{99}}\right)-\frac{1}{3^{100}}\)
\(\Rightarrow2\cdot S=3+0+0+0+...+0-\frac{1}{3^{100}}\)
\(\Rightarrow2\cdot S=3-\frac{1}{3^{100}}\)
Do \(3-\frac{1}{3^{100}}< 3\) nên:
\(\Rightarrow2\cdot S< 3\)
\(\Rightarrow S< \frac{3}{2}\) ( 2 )
Từ ( 1 ) và ( 2 ), theo tính chất bắc cầu suy ra:
\(2\cdot A< \frac{3}{2}\)
\(\Rightarrow A< \frac{3}{2}:2\)
\(\Rightarrow A< \frac{3}{2\cdot2}\)
\(\Rightarrow A< \frac{3}{4}\) ( đpcm )
Chứng minh rằng:
A=1/3 + 2/32 + 3/33 + 4/33 + ....... +100/3100 + 101/3101 < 3/4
\(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}+\frac{101}{3^{101}}\)
\(3A=1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{100}{3^{99}}+\frac{101}{3^{100}}\)
\(3A-A=\left(1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{100}{3^{99}}+\frac{101}{3^{100}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}+\frac{101}{3^{101}}\right)\)
\(2A=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}+\frac{1}{3^{100}}-\frac{101}{3^{101}}\)
\(2A=1+\left(\frac{1-\frac{1}{3^{100}}}{2}\right)-\frac{101}{3^{101}}< 1+\frac{1}{2}=\frac{3}{2}\)
\(\Rightarrow A< \frac{3}{2}:2=\frac{3}{4}\)( đpcm )
Chứng minh rằng:
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\) \(B=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}+\frac{101}{3^{101}}< \frac{3}{4}\)
Giúp mình nha. Bài cuối cùng của đề toán dài 36 bài của mình đó
\(A=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{100.100}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
Mà \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}< 1\)
Nên từ đây => \(A< 1\) (ĐPCM)
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
Ta có : \(\frac{1}{2^2}=\frac{1}{2\cdot2}< \frac{1}{1\cdot2}\)
\(\frac{1}{3^2}=\frac{1}{3\cdot3}< \frac{1}{2\cdot3}\)
\(\frac{1}{4^2}=\frac{1}{4\cdot4}< \frac{1}{3\cdot4}\)
...
\(\frac{1}{100^2}=\frac{1}{100\cdot100}< \frac{1}{99\cdot100}\)
Cộng vế theo vế
=> \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
=> \(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
=> \(A< \frac{1}{1}-\frac{1}{100}=\frac{99}{100}\)(1)
Lại có \(\frac{99}{100}< 1\)(2)
Từ (1) và (2) => \(A< \frac{99}{100}< 1\Rightarrow A< 1\left(đpcm\right)\)
-1/3+1/3^2-1/3^3+1/3^4-.…...+1/3^100+1/3^101 Chứng minh rằng:A=1/2+1/3+1/4+..+1/16 không phải số tự nhiên(chứng minh 0
Chứng minh rằng :\(\frac{1}{3^1}+\frac{2}{3^2}+\frac{3}{3^3}+.....+\frac{100}{3^{100}}+\frac{101}{3^{101}}< \frac{3}{4}\)
Nhanh lên nhé . Mk đang cần gấp
Đặt \(S=\frac{1}{3}+\frac{2}{3^2}+.......+\frac{101}{3^{101}}\)
\(\Rightarrow3S=1+\frac{2}{3}+.......+\frac{101}{3^{100}}\)
\(\Rightarrow3S-S=\left(1+\frac{2}{3}+..+\frac{101}{3^{100}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+..+\frac{101}{3^{101}}\right)\)
\(\Rightarrow2S=1+\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{100}}-\frac{101}{3^{101}}< 1+\frac{1}{3}+....+\frac{1}{3^{100}}\)
\(\Rightarrow6S< 3+1+........+\frac{1}{3^{99}}\)
\(\Rightarrow6S-2S< \left(3+1+....+\frac{1}{3^{99}}\right)-\left(1+\frac{1}{3}+....+\frac{1}{3^{100}}\right)\)
\(\Rightarrow4S< 3-\frac{1}{3^{100}}< 3\Rightarrow S< \frac{3}{4}\)
Đặt \(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}+\frac{101}{3^{101}}\)
\(3A=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}+\frac{101}{3^{100}}\)
\(3A-A=\left(1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{101}{3^{100}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+...+\frac{101}{3^{101}}\right)\)
\(2A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}-\frac{101}{3^{101}}\)
\(6A=3+1+\frac{1}{3}+...+\frac{1}{3^{99}}-\frac{101}{3^{100}}\)
\(6A-2A=\left(3+1+\frac{1}{3}+...+\frac{1}{3^{99}}-\frac{101}{3^{100}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}-\frac{101}{3^{101}}\right)\)
\(4A=3-\frac{101}{3^{100}}-\frac{1}{3^{100}}+\frac{101}{3^{101}}\)
\(4A=3-\frac{303}{3^{101}}-\frac{3}{3^{101}}+\frac{100}{3^{101}}\)
\(4A=3-\frac{206}{3^{101}}< 3\)
=>\(4A< 3\)
\(\Rightarrow A< \frac{3}{4}\)
S=1×2+2×3+3×4+4×5+...........+99×100
3S=1×2×3+2×3×(4-1)+3×4×(5-2)+4×5×(6-3)+............+99×100×(101-98)
3S=1×2×3+2×3×4-1×2×3+3×4×5-2×3×4+4×5×6-3×4×5+.............+99×100×101-98×99×100
3S=99×100×101
Tại sao 3S=99×100×101
Các bạn giải thích hộ mình với!
MÌNH CẢM ƠN MỌI NGƯỜI!
Kính thưa cả nhà olm.com giải giúp mình bài này với ạ.
Chứng minh rằng:
D = 1/3+2/32+3/33+4/34+…+100/3100+101/3101<3/4
S=1×2+2×3+3×4+4×5+...........+99×100
3S=1×2×3+2×3×(4-1)+3×4×(5-2)+4×5×(6-3)+............+99×100×(101-98)
3S=1×2×3+2×3×4-1×2×3+3×4×5-2×3×4+4×5×6-3×4×5+.............+99×100×101-98×99×100
3S=99×100×101
Tại sao 3S=99×100×101
Các bạn giải thích hộ mình với!
MÌNH CẢM ƠN MỌI NGƯỜI!