Chứng minh rằng :
\(\frac{9}{10!}+\frac{9}{11!}+\frac{9}{12!}+...\frac{9}{100!}< \frac{1}{9!}\)
Chứng minh rằng:
a) \(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}<1\)
b) \(\frac{9}{10!}+\frac{9}{11!}+\frac{9}{12!}+...+\frac{9}{1000!}<\frac{1}{9!}\)
Bạn tham khảo nhé
\(a)\)Đặt \(A=\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}\)
\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(A< 1-\frac{1}{100}=\frac{100-1}{100}=\frac{99}{100}< 1\) ( đpcm )
Vậy \(A< 1\)
Chứng minh rằng:
a) \(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}<1\)
b) \(\frac{9}{10!}+\frac{9}{11!}+\frac{9}{12!}+...+\frac{9}{1000!}<\frac{1}{9!}\)
1,Chứng minh rằng
\(\frac{9}{10!}+\frac{9}{11!}+\frac{9}{12!}+...+\frac{9}{1000!}< \frac{1}{9!}\)
Chứng minh:
\(B=\frac{9}{10!}+\frac{9}{11!}+\frac{9}{12!}+....+\frac{9}{100!}
Ta có :
\(B=\frac{9}{10!}+\frac{9}{11!}+\frac{9}{12!}+...+\frac{9}{100!}\)
\(B=9\left(\frac{1}{10!}+\frac{1}{11!}+\frac{1}{12!}+...+\frac{1}{100!}\right)< 9\left(\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}+...+\frac{1}{99.100}\right)\)
\(B< 9\left(\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(B< 9\left(\frac{1}{9}-\frac{1}{100}\right)=1-\frac{9}{100}< 1\) ( đpcm )
Vậy \(B< 1\)
Chúc bạn học tốt ~
Xin lỗi đoạn cuối mình nhìn nhầm bài >_<
Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
Bạn tham khảo.
Chứng minh rằng:\(\frac{9}{10!}+\frac{9}{11!}+\frac{9}{12!}+...+\frac{9}{1000!}<\frac{1}{9!}\)
Chứng minh rằng:
a) \(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}<1\)
b) \(\frac{9}{10!}+\frac{9}{11!}+\frac{9}{12!}+...+\frac{9}{1000!}<\frac{1}{9!}\)
a) \(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}
Chứng minh rằng \(\frac{9}{10!}+\frac{10}{11!}+\frac{11}{12!}+...+\frac{99}{100!}\) < \(\frac{1}{9!}\)
Chứng minh rằng :
\(\frac{9}{10!}+\frac{9}{11!}+\frac{9}{12!}+........+\frac{9}{1000!}<\frac{1}{9!}\)
Ta đặt biểu thức đã cho là A
suy ra A < (10-1)/10! + (11-1)/11! +...+ (1000-1)/1000!
=> A < 10/10! - 1/10! + 11/11! - 1/11! +...+ 1000/1000! - 1/1000!
=> A < 1/9! - 1/10! + 1/10! - 1/11! +...+ 1/999! - 1/1000!
=> A < 1/9! - 1/1000! < 1/9!
Vậy A < 1/9!
Chúc bạn hoc tốt
Chứng minh rằng
\(\frac{9}{10!}+\frac{9}{11!}+\frac{9}{12!}+...+\frac{9}{1000!}<\frac{1}{9!}\)
Làm nhanh lên nhé
Miu Ti 10! là 10 giai thừa đó
Như vầy nè: 10! = 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 10
Số nào giai thừa thì nhân từ 1 đến số đó, cụ thể:
a! = 1 x ...... x ... x a
2! = 1 x 2
3! = 1 x 2 x 3