Cho A',B',C' lần lượt nằm trên cạnh BC,AC,AB của tam giác ABC. Biết rằng AA',BB',CC' đồng quy tại M. Chứng minh rằng: \(\frac{AM}{A'M}=\frac{AB'}{CB'}+\frac{AC'}{BC'}\)
cho tam giác abc các điểm a';b';c' trên các cạnh bc;ac;ab sao cho các đường thẳng aa';bb';cc' đồng quy tại m chứng minh rằng am/a'm=ab'/cb'+ac'/bc'
Cho A', B', C' lần lượt thuộc cạnh BC, AC, AB của tam giác ABC. biết AA', BB', CC' đồng quy tại M. C hứng minh AM/A'M=A'B/CB'+AC'/BC'
Cho A', B', C' lần lượt nằm trên ba cạnh BC, AC, AB (hoặc trên các đường thẳng chứa các cạnh) của tam giác ABC sao cho AA', BB', CC' đồng quy tại O.
Chứng minh rằng : \(\frac{AC'}{BC'}.\frac{BA'}{CA'}.\frac{CB'}{AB'}=1\) (Định lí Xêva).
trong sách nâng cao phát triển toán 8 có bạn nhé
Cho A',B',C' lần lượt nằm trên cạnh BC,AC,AB của tam giác ABC .Biết rằng AA',BB',CC' đồng qui tại M.Chứng minh rằng:AM/A"M=AB'/CB'+AC'/BC'
Cho A', B', C' lần lượt nằm tên cạnh BC, AC, AB của tam giác ABC, biết rằng Â', BB', CC" đồng quy tại M
CM:\(\dfrac{AM}{A'M}=\dfrac{AB'}{CB'}+\dfrac{AC'}{B'C'}\)
Cho A' ,B' ,C' lần lượt nằm trên ba cạnh BC ,AC ,AB (hoặc trên các đường thẳng chứa các cạnh) của tam giác ABC.
Chứng minh rằng điều kiện cần và đủ để các đường thẳng AA', BB', CC' đồng quy là
\(\frac{AC'}{BC'}\).\(\frac{BA'}{CA'}\).\(\frac{CB'}{AB'}\)=1
Cho $A'$, $B'$, $C'$ nằm trên các cạnh $BC$, $AC$, $AB$ của $\Delta $ABC, biết $AA'$, $BB'$, $CC'$ đồng quy tại $M$. Chứng minh rằng $\dfrac{AM}{A'M}=\dfrac{AB'}{CB'}+\dfrac{AC'}{BC'}$.
Qua vẽ đường thẳng song song với cắt tại và cắt tại .
Khi đó
có // suy ra (1)
có // suy ra (2)
Từ (1) và (2) ta có (*)
Chứng minh tương tự ta cũng có:
có // suy ra (3)
có // suy ra (4)
Từ (3) và (4) ta có (**)
Từ (*) và (**) ta có (đpcm).
Qua vẽ đường thẳng song song với cắt tại và cắt tại .
Khi đó
có // suy ra (1)
có // suy ra (2)
Từ (1) và (2) ta có (*)
Chứng minh tương tự ta cũng có:
có // suy ra (3)
có // suy ra (4)
Từ (3) và (4) ta có (**)
Từ (*) và (**) ta có (đpcm).
Cho tam giác ABC và ba điểm A’, B’, C’ lần lượt nằm trên ba cạnh BC, CA, AB sao cho AA’, BB’, CC’ đồng quy. (A’, B’, C’ không trùng với các đỉnh của tam giác ABC). Chứng minh rằng:
\(\frac{A'B}{A'C}.\frac{B'C}{B'A}.\frac{C'A}{C'B}=1\)
Định lý Ceva phải không?
Mình cũng không biết nhưng nếu bạn nghĩ như vậy thì hãy thử làm xem ạ!
Chắc định lý Ceva rồi. Mình không biết là mình có ghi lại cách chứng minh không.
Cho tam giác ABC và M là một điểm tùy ý trong tam giác này. Các đường thẳng AM, BM, CM lần lượt cắt các cạnh BC, AC, AB tại A', B', C'.
Chứng minh rằng tổng \(\frac{AM}{AA'}+\frac{BM}{BB'}+\frac{CM}{CC'}\) bằng hằng số.