tim x y biet x+y+xy+1=0
tim x y biet x+y+xy+1=0
x+y+xy+1=0 => y+x(y+1)+1=0 => (y+1)+x(y+1)=0 => (x+1)(y+1)=0 => x=-1 thì y bất kì còn y = -1 thì x bất kì
tim x y biet x+y+xy+1=0
\(x+y+x.y+1=0\)
\(x.1+x.y+y+1\) \(=0\)
\(x.\left(1+y\right)+\left(y+1\right)\) \(=0\)
\(\left(1+y\right).\left(x+1\right)=0\)
\(\Rightarrow1+y=0\) \(\Rightarrow\) \(y=-1\)
\(\Rightarrow\) \(x+1=0\) \(\Rightarrow\) \(x=-1\)
tim x y biet x+y+xy+1=0
x+y+xy+1=0
<=>x+xy+y+1=0
<=>x.(y+1)+(y+1)=0
<=>(y+1)(x+1)=0
<=>y+1=0 và x+1=0
<=>y=-1 và x=-1
vậy x=y=-1
tim x y biet x+y+xy+1=0
tim x y biet x+y+xy+1=0
tim x y biet x+y+xy+1=0
tim x y biet x+y+xy+1=0
tim x, y , z biet x^2 - xy + y^2=0
Tim so nguyen x,y biet
(x+1)^2+(y-1)^2=0
(x+3)×(y+1)=3
xy-2x=5
(x+3).(y+1)=3
--->x+3,y+1 thuộc Ư(3)={1,3,-1,-3}
Ta có bảng sau
x+3 1 -1
y+1 3 -3
y 2 -4
x -2 -4
--->(x,y) thuộc(-2,2),(-4,-4)