tính nhanh (1-1/99)*(1-1/100)*...*(1-1/2006)
Tính nhanh : (1-1/99) nhân (1-1/100) nhân ..... nhân (1-1/2006)
Ta có : \(\left(1-\frac{1}{99}\right)\text{ x }\left(1-\frac{1}{100}\right)\text{ x }.....\text{ x }\left(1-\frac{1}{2006}\right)\)
\(=\frac{98}{99}\text{ x }\frac{99}{100}\text{ x }\frac{100}{101}\text{ x }......\text{ x }\frac{2005}{2006}\)
\(=\frac{98\text{ x }99\text{ x }100\text{ x }......\text{ x }2005}{99\text{ x }100\text{ x }101\text{ x }......\text{ x }2006}\)
\(=\frac{98}{2006}=\frac{49}{1003}\)
tính:
(1-1 phần 99) . (1-1 phần 100) . đến . (1-1 phần 2006)
chú ý : dấu chấm là dấu nhân
( 1 - 1/99) x ( 1 - 1/100) x...(1 - 1/2006)
(1-1/99).(1-1/100)....(1-1/2006) =(99/99-1/99).(100/100-1/100)....(2006/2006-1/2006) = (98/99).(99/100)...(2005/2006) =98/2006=..
( 1 - 1/99) x ( 1 - 1/100) x...(1 - 1/2006)
1-1/99).(1-1/100)....(1-1/2006)
=(99/99-1/99).(100/100-1/100)....(2006/2006-1/2006) = (98/99).(99/100)...(2005/2006) =98/2006=..
[1-1/99]nhân[1-1/100]................. [1-2006]=?
trong tích đã cho từ 1-1/99 đến 1-2006 sẽ có 1 thừa số bằng 1-1=0
=>tích đã cho bằng 0
Tính nhanh :
1/100-1/100×99-1/99×98-...-1/3×2 -1/2×1
\(\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-...-\frac{1}{3.2}-\frac{1}{2.1}.\)
\(=\frac{1}{100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
\(=\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(=\frac{1}{100}-\left(1-\frac{1}{100}\right)=\frac{1}{100}-\frac{99}{100}=\frac{98}{100}=\frac{49}{50}\)
Tính nhanh
1/100 - 1/ 100 . 99 - 1/99 . 98 - 1/ 97 .98 - 1/ 97 .98 - ..- 1/ 3.2 - 1/2.1
đề :
= 1/100 - (1 / 100.99 +1/99.98 + ...+ 1/3.2 +1/2.1 )
=1/100 - (1 /1.2 +1/ 2.3 +...+ 1/ 98.99 +1 / 99.100)
=1/100 -( 1- 1/ 2 +1/2 -1/3 +...+1/98 -1/99 +1/99 -1/100)
=1/100 - ( 1- 1/100)
=1/100 - 99 /100
= -98/100
= -49 /50
tính nhanh (1+2+3+...+99+100).(1/2-1/3-1/7-1/9)(63.1,2-21.3,6)/1-2+3-4+...+99-100
Ta có \(63,1.2-21,3.6=0,9.7.10.1,2-21.3,6\)
\(=6,3.1,2-21.3,6\)
\(=0,9.7.4.3-7.3.0,9.4\)
\(=6,3.1,2-6,3.1,2\)
\(=0\)
\(\Rightarrow\dfrac{\left(1+2+......+100\right).\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{9}\right)\left(63.1,2-21.3,6\right)}{1-2+3-4+.....+99-100}=\dfrac{\left(1+2+.....+100\right)\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{9}\right)0}{1-2+3-4+......+99-100}=0\)
TÍNH \(\left(1-\frac{1}{99}\right)\times\left(1-\frac{1}{100}\right)\times......\times\left(1-\frac{1}{2006}\right)\)
CÁC BẠN ƠI TÍNH GIÚP MÌNH BÀI NÀY VỚI
\(\left(1-\frac{1}{99}\right).\left(1-\frac{1}{100}\right).....\left(1-\frac{1}{2006}\right)\)
\(=\left(\frac{99}{99}-\frac{1}{99}\right).\left(\frac{100}{100}-\frac{1}{100}\right).....\left(\frac{2006}{2006}-\frac{1}{2006}\right)\)
\(=\frac{98}{99}.\frac{99}{100}......\frac{2005}{2006}\)
\(=\frac{98.99.....2005}{99.100....2006}\)
\(=\frac{98}{2006}=\frac{49}{2006}\)
ủng hộ nha ai k mik k lại