cho 3x + y =1. a> Tìm GTNN M= 3x^3 + y^2 . b> tìm GTLN M= xy
cho 3x+y=1
a> tìm GTNN M= 3x^2 + y^2
b> tìm GTLN N= xy
\(3x+y=1\Rightarrow y=1-3x\) (1)
a ) Thay (1) vào M ta được :
\(M=3x^2+\left(1-3x\right)^2=3x^2+9x^2-6x+1=12x^2-6x+1\)
\(=\left(\sqrt{12}x\right)^2-2\sqrt{12}x.\frac{3}{\sqrt{12}}+\frac{9}{12}+\frac{1}{4}=\left(\sqrt{12}x-\frac{3}{\sqrt{12}}\right)^2+\frac{1}{4}\ge\frac{1}{4}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{4}\)
Vậy \(M_{min}=\frac{1}{4}\) tại \(x=y=\frac{1}{4}\)
b ) Thay (1) vào N ta được :
\(N=x\left(1-3x\right)=x-3x^2=-\left(\sqrt{3}x\right)^2+2.\sqrt{3}x.\frac{1}{2\sqrt{3}}-\frac{1}{12}+\frac{1}{12}\)
\(=-\left(\sqrt{3}x-2.\sqrt{3}x.\frac{1}{2\sqrt{3}}+\frac{1}{12}\right)+\frac{1}{12}=-\left(\sqrt{3}x-\frac{1}{2\sqrt{3}}\right)^2+\frac{1}{12}\le\frac{1}{12}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{6}\\y=\frac{1}{2}\end{cases}}\)
Vậy \(N_{max}=\frac{1}{12}\) tại \(x=\frac{1}{6};y=\frac{1}{2}\)
Cho 3x+y=1
a. Tìm GTNN của A=3x^2+y^2
b.Tìm GTLN của B=xy
Cho x,y thỏa 3x + y=1
a) Tìm GTNN của M= 3x2 + y2
b) Tìm GTLN của N=2xy
1. Tìm GTNN của A= \(\frac{x^2-2x+2018}{x^2}\)
2. Tìm GTLN của B=\(\frac{3x^2+9x+17}{3x^2+9x+7}\)
3. Tìm GTLN của M= \(\frac{3x^2+14}{x^2+4}\)
4. Cho x+y=2. Tìm GTNN của A= \(x^3+y^3+2xy\)
1) \(A=\frac{2018x^2-2.2018x+2018^2}{2018x^2}=\frac{\left(x-2018\right)^2+2017x^2}{2018x^2}=\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\)
vì \(\frac{\left(x-2018\right)^2}{2018x^2}\ge0\Rightarrow\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\ge\frac{2017}{2018}\)
dấu = xảy ra khi x-2018=0
=> x=2018
Vậy Min A=\(\frac{2017}{2017}\)khi x=2018
2) \(B=\frac{3x^2+9x+17}{3x^2+9x+7}=\frac{3x^2+9x+7+10}{3x^2+9x+7}=1+\frac{10}{3x^2+9x+7}=1+\frac{10}{3.x^2+9x+7}\)
\(=1+\frac{10}{3.\left(x^2+9x\right)+7}=1+\frac{10}{3.\left[x^2+\frac{2.x.3}{2}+\left(\frac{3}{2}\right)^2\right]-\frac{9}{4}+7}=1+\frac{10}{3.\left(x+\frac{9}{2}\right)^2+\frac{1}{4}}\)
để B lớn nhất => \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\)nhỏ nhất
mà \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)vì \(3.\left(x+\frac{3}{2}\right)^2\ge0\)
dấu = xảy ra khi \(x+\frac{3}{2}=0\)
=> x=\(-\frac{3}{2}\)
Vậy maxB=\(41\)khi x=\(-\frac{3}{2}\)
3) \(M=\frac{3x^2+14}{x^2+4}=\frac{3.\left(x^2+4\right)+2}{x^2+4}=3+\frac{2}{x^2+4}\)
để M lớn nhất => x2+4 nhỏ nhất
mà \(x^2+4\ge4\)(vì x2 lớn hơn hoặc bằng 0)
dấu = xảy ra khi x2 =0
=> x=0
Vậy Max M\(=\frac{7}{2}\)khi x=0
ps: bài này khá dài, sai sót bỏ qua =))
ê viết lộn dòng này :v
\(MinA=\frac{2017}{2018}\)nha
a, tìm GTLN A= x(5-3x)
b, cho x+y=7. tìm GTLN xy
c, tìm GTNN của F= x(x-3)(x-4)(x-7)
a) A = x( 5 - 3x ) = -3x2 + 5x = -3( x2 - 5/3x + 25/36 ) + 25/12
= -3( x - 5/6 )2 + 25/12 ≤ +25/12 ∀ x
Dấu "=" xảy ra khi x = 5/6
Vậy MaxA = 25/12 <=> x = 5/6
b) Từ x + y = 7 => x = 7 - y
Ta có : xy = ( 7 - y ).y = 7y - y2 = -( y2 - 7y + 49/4 ) + 49/4 = -( y - 7/2 )2 + 49/4 ≤ 49/4 ∀ y
Dấu "=" xảy ra <=> y = 7/2 => x = 7/2
Vậy Max(xy) = 49/4 <=> x = y = 7/2
( nếu cho x,y dương thì Cauchy nhanh gọn luôn :)) )
c) F = x( x - 3 )( x - 4 )( x - 7 )
= [ x( x - 7 ) ][ ( x - 3 )( x - 4 ) ]
= ( x2 - 7x )( x2 - 7x + 12 )
Đặt t = x2 - 7x
F = t( t + 12 ) = t2 + 12t = ( t2 + 12t + 36 ) - 36 = ( t + 6 )2 - 36
= ( x2 - 7x + 6 )2 - 36 ≥ -36 ∀ x
Dấu "=" xảy ra khi x2 - 7x + 6 = 0 <=> x = 1 hoặc x = 6
Vậy MinF = -36 <=> x = 1 hoặc x = 6
Cho x,y >0 t/m 1/x +1/y + 1/xy =3.
Tìm GTLN của A= \(\dfrac{2}{\sqrt{3x^2+1}}+\dfrac{2}{\sqrt{3y^2+1}}\)
\(3=\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{xy}\Leftrightarrow x+y+1=3xy\)
\(\Leftrightarrow y\left(3x-1\right)=x+1\Leftrightarrow y=\dfrac{x+1}{3x-1}\)
\(\left(3x^2+1\right)\left(3+1\right)\ge\left(3x+1\right)^2\Rightarrow\sqrt{3x^2+1}\ge\dfrac{1}{2}\left(3x+1\right)\)
\(\Rightarrow\dfrac{2}{\sqrt{3x^2+1}}\le\dfrac{4}{3x+1}\)
\(\Rightarrow A\le\dfrac{4}{3x+1}+\dfrac{4}{3y+1}=\dfrac{4}{3x+1}+\dfrac{2\left(3x-1\right)}{3x+1}=\dfrac{6x+2}{3x+1}=2\)
\(A_{min}=2\) khi \(x=y=1\)
tìm gtln ( gtnn)
B = x^2 -3x + y^2 -3y + xy + 2019
đặt x+y=a; xy=b; ta có \(b\le\frac{a^2}{4}\)
B = \(a^2-b-3a+2019\ge a^2-\frac{a^2}{4}-3a+2019=\frac{3}{4}\left(a-2\right)^2+2016\)\(\ge2016\)
B đạt GTNN khi a= \(2;a^2=4b\) <=> x=y = 1
1. Cho x,y thỏa mãn: x2 + 5y2 - 4xy + 2y = 3. Tìm x,y sao cho x đạt GTLN
2. Cho x,y thỏa mãn: 3x2 + y2 + 2xy + 4 = 7x + 3y
a) Tìm GTNN, GTLN của biểu thức P = x + y
b) Tìm GTNN, GTLN của x
3. Cho x,y thỏa mãn: x2 + 2y2 + 2xy + 7x + 7y + 10 = 0. Tìm GTLN, GTNN của S = x + y
Answer:
3.
\(x^2+2y^2+2xy+7x+7y+10=0\)
\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)
\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)
\(\Rightarrow4S^2+28S+4y^2+40=0\)
\(\Rightarrow4S^2+28S+49+4y^2-9=0\)
\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)
\(\Rightarrow-3\le2S+7\le3\)
\(\Rightarrow-10\le2S\le-4\)
\(\Rightarrow-5\le S\le-2\left(2\right)\)
Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)
Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)
Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)
cho 3 số x,y,z>0 xy+yz+xz=xyz Tìm GTNN của biểu thức:
M=1/4x+3y+z + 1/x+4y+3x + 1/3x+y+4z
Sửa thành tìm GTLN nhé !
Với x,y,z>0 chia 2 vế của \(xy+yz+xz=xyz\) cho \(xyz\) ta có :
\(xy+yz+xz=xyz\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\frac{1}{4x+3y+z}\le\frac{1}{64}\left(\frac{4}{x}+\frac{3}{y}+\frac{1}{z}\right)\). Tương tự cho 2 BĐT kia:
\(\frac{1}{x+4y+3z}\le\frac{1}{64}\left(\frac{1}{x}+\frac{4}{y}+\frac{3}{z}\right);\frac{1}{3x+y+4z}\le\frac{1}{64}\left(\frac{3}{x}+\frac{1}{y}+\frac{4}{z}\right)\)
Cộng theo vế 3 BĐT trên ta có:
\(M\leΣ\frac{1}{64}\left(\frac{4}{x}+\frac{3}{y}+\frac{1}{z}\right)=Σ\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{8}\)
Đẳng thức xảy ra khi \(x=y=z=3\)