Phân Tích đa thức thành nhân tử
( x+y)(y+z)(z+x)+xyz
Bài 1 phân tích đa thức thành nhân tử z^3(x+y^2)+y^3(z-x^2)-x^3(y+z^2)-xyz(xyz-1)
\(z^3\left(x+y^2\right)+y^3\left(z-x^2\right)-x^3\left(y+z^2\right)-xyz\left(xyz-1\right)\)
\(=xz^3+y^2z^3+y^3z-x^2y^3-x^3-x^3z^2-x^2y^2z^2+xyz\)
\(=\left(y^2z^3+y^3z\right)+\left(xz^3+xyz\right)-\left(x^2y^3+x^2y^2z^2\right)-x^3\left(y+z^2\right)\)
\(=y^2z\left(y+z^2\right)+xz\left(y+z^2\right)-x^2y^2\left(y+z^2\right)-x^3\left(y+z^2\right)\)
\(=\left(y+z^2\right)\left(y^2z+xz-x^2y^2-x^3\right)\)
\(=\left(y+z^2\right)\left[z\left(y^2+x\right)-x^2\left(y^2+x\right)\right]\)
\(=\left(y+z^2\right)\left(z-x^2\right)\left(y^2+x\right)\)
Tick hộ nha bạn 😘
z^3(x+y^2)+y^3(z-x^2)-x^3(y+z^2)-xyz(xyz-1)
Phân tích đa thức thành nhân tử:
y3(z-x2)-z3(x+y2)-x3(y-z2) +xyz(xyz+1)
Phân tích đa thức thành nhân tử
1. (x+y)(y+z)(z+x)+xyz
2. x^8+x^4+1
phân tích đa thúc thành nhân tử:
A=(x+y)(y+z)(z+x)+xyz
Phân tích đa thức thành nhân tử :
x^3 + y^3 + z^3 - 3 xyz
\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)
\(=\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2+z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2+z\left(x+y\right)+z^2-3xy\right]\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2+xz+yz-xy\right)\)
\(x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
Ta có :
\(x^3+y^3+z^3-3xyz\)
\(\Rightarrow\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)
\(\Rightarrow\left(x+y+z\right)\left[\left(x+y^2\right)-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)
\(\Rightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
P/s tham khảo nha
hok tốt
phân tích đa thức thành nhân tử
(x +y )(y+z)(z+x)+xyz
x^2 + x +2
x^2 - y^2 +10x - 6y +16
x^2 (x - y) + y^2 (z- x) + z^2(x- y )
Ta có: \(\left(x+y\right)\left(y+z\right)\left(z+x\right)+xyz=x^2y+xy^2+xyz+y^2z+yz^2+xyz+xz^2+x^2x+xyz\)
\(=xy\left(x+y+z\right)+yz\left(x+y+z\right)+zx\left(x+y+z\right)=\left(x+y+z\right)\left(xy+yz+zx\right)\)
\(x^2-y^2+10x-6y+16=\left(x^2+10x+25\right)-\left(y^2+6y+9\right)\)
\(=\left(x+5\right)^2-\left(y+3\right)^2=\left(x+y+8\right)\left(x-y+2\right)\)
\(x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(x-y\right)=x^2\left(y-z\right)+yz\left(y-z\right)-x\left(y-z\right)\left(y+z\right)\)
\(=\left(y-z\right)\left(x^2+yz-xy-xz\right)=\left(y-z\right)\left(x-y\right)\left(z-x\right)\)
Phân tích đa thức thành nhân tử:
xyz - ( xy + yz - xz) + ( x + y + z) -1
\(xyz-\left(xy+yz+xz\right)+\left(x+y+z\right)-1\)
\(=xyz-xy-yz+y-xz+x+z-1\)
\(=xy\left(z-1\right)-y\left(z-1\right)-x\left(z-1\right)+z-1\)
\(=\left(xy-y-x+1\right)\left(z-1\right)\)
\(=[\left(x-1\right)y-\left(x-1\right)]\left(z-1\right)\)
\(=\left(x-1\right)\left(y-1\right)\left(z-1\right)\)
Phân tích đa thức thành nhân tử:
xyz - ( xy + yz - xz) + ( x + y + z) -1
Phân tích đa thức thành nhân tử:
a) (x+y) . (y+z) . (z+x) + xyz
b) x . (y2-z2) + y . (z2-x2) + z . (x2-y2)
y(x+y)+yz(y+z)+xz(x+z)+2xyz
= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz
= xy(x + y) + yz(y + z + x) + xz(x + z + y)
= xy(x + y) + z(x + y + z)(y + x)
= (x + y)(xy + zx + zy + z²)
= (x + y)[x(y + z) + z(y + z)]
= (x + y)(y + z)(z + x)