chứng minh rằng từ tỉ lệ thức a/b =c/d ta suy ra tỉ lệ thức: a+b/b = c+d/d
Chứng minh rằng từ tỉ lệ thức a/b=c/d(a-b,c-d khác 0)ta có thể suy ra tỉ lệ thức a+b/a-b=c+d/c-d
chứng minh rằng từ tỉ lệ thức a/b=c/d(a-b khác 0,c-d khác 0) ta có thể suy ra tỉ lệ thức a+b/a-b=c+d/c-d
ta có:a/b=c/d
=>a/c=b/d
áp dụng tích chất dãy tỉ số bằng nhau ta có:
a/c=b/d=a+b/c+d=a-c/c-d
=>a+b/c+d=a-b/c-d
do đó: a+b/a-c=c+d/c-d
ta có;
a/b=c/d =>a/c=b/d
áp dụng tích chất dãy tỉ số bằng nhau ta có:
a/c=b/d =>a+b/c+d=a-b/c-d
=>a+b/c+d=a-b/c-d => a+b/a-b=c+d/c-d
đập chết cha mày bây giờ đưa tiền đây:500triệu mày nợ mua đất
Từ tỉ lệ thức a/b = c/d, hãy suy ra các tỉ lệ thức sau ( giả thiết rằng, các tỉ lệ thức đều có nghĩa)
a) a - b / a + b = c - d / c + d
b) 2a + 3b / 3a - 4b = 2c + 3d / 3c - 4d
(những dấu / là phân số)
ta có: \(\frac{a}{b}=\frac{c}{d}\approx\frac{a}{c}=\frac{b}{d}\)
áp dụng t/c dãy tỉ số bằng nhau ta có
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
\(\Rightarrow\frac{a+b}{c+d}=\frac{a-b}{c-d}\approx\frac{a+b}{a-b}=\frac{c+d}{c-d}\approx\frac{a-b}{a+d}=\frac{c-d}{c+d}\)
Vậy.........................................
bài 8 . CHỨNG MINH RẰNG TỪ TỈ LỆ THỨC \(\frac{A}{B}=\frac{C}{D}\)( A-B KHÁC 0 . C-D KHÁC 0 ) TA CÓ THẺ SUY RA TỈ LỆ THỨC \(\frac{A+B}{A-B}=\frac{C+D}{C-D}\)
BÀI 9 .SỐ HỌC SINH BỐN KHỐI 6,7,8,9,TỈ LỆ VỚI CÁC SỐ 9,8,7,6. BIẾT RẰNG SỐ HỌC SINH KHỐI 9 ÍT HƠN SỐ HỌC SINH KHỐI 7 LÀ 70 HỌC SINH . TÍNH SỐ HỌC SINH MỖI KHỐI
chứng minh tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)suy ra tỉ lệ thức \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
cho tỉ lệ thức a/b = c/d
Chứng minh rằng ta có tỉ lệ thức a-b/b = c-d/d
ai nhanh nhất mình tick cho
nhanh lên mình cần gấp
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)
Do đó ta có:
\(\frac{a-b}{b}=\frac{bk-b}{b}=\frac{b\left(k-1\right)}{b}=k-1\left(1\right)\)
\(\frac{c-d}{d}=\frac{dk-d}{d}=\frac{d\left(k-1\right)}{d}=k-1\left(2\right)\)
Từ (1) và (2) ta có tỉ lệ thức a-b/b = c-d/d
VÌ a/b =c/d nên a/b-1=c/d-1 nên a-b/b=c-d/d
từ tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\) (a,b,c,d ≠ 0) ta có thể suy ra
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{c}=\dfrac{b}{d}\\\dfrac{d}{b}=\dfrac{c}{a}\\\dfrac{d}{c}=\dfrac{b}{a}\end{matrix}\right.\)
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\).Chứng minh rằng ta có tỉ lệ thức \(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow\)a=bk , c=dk
Ta có:
\(\left(\frac{a+b}{c+d}\right)^2=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\)\(\frac{\left(b\left(k+1\right)\right)^2}{\left(d\left(k+1\right)\right)^2}=\frac{b^2\times\left(k+1\right)^2}{d^2\times\left(k+1\right)^2}=\frac{b^2}{d^2}\)( 1 )
\(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2\times k^2+b^2}{d^2\times k^2+d^2}\)= \(\frac{b^2\times\left(k^2+1\right)}{d^2\times\left(k^2+1\right)}=\frac{b^2}{d^2}\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)(dpcm)
* Giả sử tất cả các tỷ lệ thức đều có nghĩa.
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{c}\times\frac{b}{d}=\frac{b}{d}\times\frac{b}{d}\Rightarrow\frac{ab}{cd}=\frac{b^2}{d^2}=\frac{a^2}{c^2}=\frac{2ab}{2cd}\)
\(=\frac{a^2+2ab+b^2}{c^2+2cd+d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a^2+b^2}{c^2+d^2}\)(ĐPCM)
Cho tỉ lệ thức a/b=c/d. Chứng minh rằng a+b/a-b=c+d/c-d
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)\(\Rightarrow a=bk;c=dk\)
Ta có:\(\frac{a+b}{a-b}=\frac{bk+b}{bk-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\left(1\right)\)
\(\frac{c+d}{c-d}=\frac{dk+d}{dk-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\left(2\right)\)
Từ (1) và (2), ta có: \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
_Học tốt_
Chứng minh rằng ta có tỉ lệ thức\(\frac{a}{b}=\frac{c}{d}\)nếu có 1 trong các đẳng thức sau(Giả thiết các tỉ lệ thức đều có nghĩa)
a)\(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
b) (a+b+c+d)(a-b-c+d)=(a-b+c-d)(a+b-c-d)
a) \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\) =>\(\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a+b}{c+d}=\frac{a-b}{c-d}\)\(=\frac{a+b+a-b}{c+d+c-d}=\frac{2a}{2c}=\frac{a}{c}\)(1)
CMTT ta có: \(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{a+b-\left(a-b\right)}{c+d-\left(c-d\right)}\)\(=\frac{a+b-a+b}{c+d-c+d}=\frac{2b}{2d}=\frac{b}{d}\)(2)
Từ (1) và (2) => \(\frac{a}{c}=\frac{b}{d}\left(=\frac{a+b}{c+d}\right)\)=>\(\frac{a}{b}=\frac{c}{d}\)(ĐPCM)
\(\sqrt{\sqrt[]{}\frac{ }{ }\hept{\begin{cases}\\\\\end{cases}}\hept{\begin{cases}\\\\\end{cases}}\orbr{\begin{cases}\\\end{cases}}^{ }^{ }^{ }_{ }^2_{ }\widebat{ }}\)