cho a,b,b>0 và
P= a^3/a^2+ab+b^2 + b^3/b^2+bc+c^2 + c^3/c^2+ac+a^2
Q=b^3/a^2+ab+b^2 + c^3/b^2+bc+c^2 + a^3/c^2+ac+a^2
CMR P=Q
a ) Cho a,b,c >0 C/m:
\(\dfrac{a^3}{a^2+ab+b^2}+\dfrac{b^3}{b^2+bc+c^2}+\dfrac{c^3}{c^2+ac+a^2}\ge\dfrac{a^2+b^2+c^2}{a+b+c}\)
b ) Cho a,b,c > 0 . C/m :
\(\dfrac{a^3}{bc}+\dfrac{b^3}{ac}+\dfrac{c^3}{ab}\ge\dfrac{3\left(a^2+b^2+c^2\right)}{a+b+c}.\)
c ) Cho a,b,c > 0 . C/m :
\(\dfrac{a^3}{bc}+\dfrac{b^3}{ac}+\dfrac{c^3}{ab}\ge a+b+c.\)
giúp nha mn
a/ \(\dfrac{a^3}{a^2+ab+b^2}+\dfrac{b^3}{b^2+bc+c^2}+\dfrac{c^3}{c^2+ac+a^2}\)
\(=\dfrac{a^4}{a^3+a^2b+ab^2}+\dfrac{b^4}{b^3+b^2c+bc^2}+\dfrac{c^4}{c^3+ac^2+ca^2}\)
\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{a\left(a^2+ab+b^2\right)+b\left(b^2+bc+c^2\right)+c\left(c^2+ca+a^2\right)}\)
\(=\dfrac{\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)\left(a^2+b^2+c^2\right)}=\dfrac{a^2+b^2+c^2}{a+b+c}\)
b/ \(\dfrac{a^3}{bc}+\dfrac{b^3}{ac}+\dfrac{c^3}{ab}=\dfrac{a^4}{abc}+\dfrac{b^4}{abc}+\dfrac{c^4}{abc}\)
\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{3abc}=\dfrac{3\left(a^2+b^2+c^2\right)^2}{3\sqrt[3]{a^2b^2c^2}.3\sqrt[3]{abc}}\)
\(\ge\dfrac{3\left(a^2+b^2+c^2\right)^2}{\left(a^2+b^2+c^2\right)\left(a+b+c\right)}=\dfrac{3\left(a^2+b^2+c^2\right)^2}{a+b+c}\)
b)
Áp dụng BĐT Cauchy Shwarz, ta có:
\(\left(1+1+1\right)\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(\Leftrightarrow\dfrac{\left(a+b+c\right)^2}{3}\le a^2+b^2+c^2\)
Áp dụng BĐT Cauchy Shwarz dạng Engel, ta có:
\(\dfrac{a^3}{bc}+\dfrac{b^3}{ac}+\dfrac{c^3}{bc}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{3abc}\)
\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{\dfrac{\left(a+b+c\right)^3}{9}}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{\dfrac{\left(a+b+c\right)}{3}\times\left(a^2+b^2+c^2\right)}\)
\(=\dfrac{3\left(a^2+b^2+c^2\right)}{a+b+c}\) (đpcm)
Dấu "=" xảy ra khi a = b = c.
cho 4 điểm a b c không đồng thời bằng 0 và 2 biểu thức : M = a^3/(a^2+ab+b^2)+b^3/(b^2+bc+c^2)+c^3/(c^2+ac+a^2) và N = b^3/(a^2+ab+b^2)+c^3/(b^2+bc+c^2)+a^3/(c^2+ac+a^2). CMR: M >= (a+b+c)/8
cho 2 biểu thức mà c/m 1 biểu thức M là sao
Biểu thức N vứt sọt à hay làm cái j v :V
tớ cũng nghĩ vậy nhưng mãi sau mới biết chứng minh M =N rồi chứng minh N >=(a+b+c)/8 để suy ra M >=(a+b+c)/8
1) Cho a, b, c>0 và a+b+c=3. Chứng minh rằng: \(\frac{a}{b^3+ab}+\frac{b}{c^3+bc}+\frac{c}{a^3+ac}\ge\frac{3}{2}\)
2) Cho a, b, c >0 thỏa mãn: ab+ac+bc+abc=4. Chứng minh rằng: \(\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\le3\)
1) \(\Sigma\frac{a}{b^3+ab}=\Sigma\left(\frac{1}{b}-\frac{b}{a+b^2}\right)\ge\Sigma\frac{1}{a}-\Sigma\frac{1}{2\sqrt{a}}=\Sigma\left(\frac{1}{a}-\frac{2}{\sqrt{a}}+1\right)+\Sigma\frac{3}{2\sqrt{a}}-3\)
\(\ge\Sigma\left(\frac{1}{\sqrt{a}}-1\right)^2+\frac{27}{2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}-3\ge\frac{27}{2\sqrt{3\left(a+b+c\right)}}-3=\frac{3}{2}\)
2.
Vỉ \(ab+bc+ca+abc=4\)thi luon ton tai \(a=\frac{2x}{y+z};b=\frac{2y}{z+x};c=\frac{2z}{x+y}\)
\(\Rightarrow VT=2\Sigma_{cyc}\sqrt{\frac{ab}{\left(b+c\right)\left(c+a\right)}}\le2\Sigma_{cyc}\frac{\frac{b}{b+c}+\frac{a}{c+a}}{2}=3\)
Cho o dong 2 la x,y,z nhe,ghi nham
Cho a,b,c>0;a+b+c=3
CMR:(a^2+bc)/(b^2+ac)+(b+ac)/(c+ab)+(c^2+ac)/(a+ab)>=3
Cho a;b;c khác 0
Thỏa mãn ab/a+b = bc/b+c = ac/a+c
Tính P= ab^2+ bc^2+ ac^2/ a^3+ b^3+ c^3
Ta có: \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ac}{a+c}.\)
\(\Rightarrow\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{a+c}{ac}\)
\(\Rightarrow\frac{1}{b}+\frac{1}{a}=\frac{1}{c}+\frac{1}{b}=\frac{1}{a}+\frac{1}{c}\)
\(\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}.\)
\(\Rightarrow a=b=c\)
Khi đó: \(P=\frac{ab^2+bc^2+ac^2}{a^3+b^3+c^3}=1.\)
Vậy \(P=1.\)
Chúc bạn học tốt!
Cho a,b,c>0 Cmr a^3/(a^2+ab+b^2)+b^3/(b^2+bc+c^2)+c^3/(c^2+ac+a^2)>=(a+b+c)/3
Cho các số a,b,c khác 0 thoả mãn:ab/a+b=ac/a+c=bc/b+c
Tính P= ab^2+bc^2+ac^2/ a^3+b^3+c^3
1. cho a,b,c thỏa mãn \(\dfrac{a^3}{a^2+ab+b^2}+\dfrac{b^3}{b^2+bc+c^2}+\dfrac{c^3}{a^2+ac+c^2}=1006\)
tính giá trị của m= \(\dfrac{a^3+b^3}{a^2+ab+b^2}+\dfrac{b^3+c^3}{b^2+bc+c^2}+\dfrac{c^3+a^3}{a^2+ac+c^2}\)
2. cho a+c+b=\(\dfrac{1}{2}\) , \(a^2+b^2+c^2+ab+bc+ac=\dfrac{1}{6}\).
tính p= \(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}\)
3. cho a,b,c khác 0, và \(\dfrac{x^4+y^4+z^4}{a^4+b^4+c^4}=\dfrac{x^4}{a^4}+\dfrac{y^4}{b^4}+\dfrac{z^4}{c^4}\)tính \(x^2+y^9+z^{1945}+2017\)
cho a+b+c=0 và a3+b3+c3=3. CM (ab-a)(bc-a)(ac-b)=(ab+bc+ca)2-a2-b2-c2