Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ngo mai phuong
Xem chi tiết
Không tên
Xem chi tiết
Nguyen Tam
Xem chi tiết
Lạy quan công đừng đánh...
6 tháng 9 2016 lúc 22:18

Hay mình làm cụ thể hơn cho bạn dễ hiểu

Lạy quan công đừng đánh...
6 tháng 9 2016 lúc 22:08

Chờ xí

Lạy quan công đừng đánh...
6 tháng 9 2016 lúc 22:17

Xét tích     \(a\left(b+2016\right)=ab+2016a\)

\(b\left(a+2016\right)=ab+2016b\). Vì b > 0 nên \(b+2016>0\)

Ta có \(a< b\) thì \(ab+2016a< ab+2016b\)

\(a\left(b+2016\right)< b\left(a+2016\right)\)

\(\Rightarrow\frac{a}{b}< \frac{a+2016}{b+2016}\)

Duyên Lương
Xem chi tiết
Nguyễn Võ Anh Nguyên
13 tháng 8 2017 lúc 15:25

3) Đặt b+c=x;c+a=y;a+b=z.

=>a=(y+z-x)/2 ; b=(x+z-y)/2 ; c=(x+y-z)/2

BĐT cần CM <=> \(\frac{y+z-x}{2x}+\frac{x+z-y}{2y}+\frac{x+y-z}{2z}\ge\frac{3}{2}\)

VT=\(\frac{1}{2}\left(\frac{y}{x}+\frac{z}{x}-1+\frac{x}{y}+\frac{z}{y}-1+\frac{x}{z}+\frac{y}{z}-1\right)\)

\(=\frac{1}{2}\left[\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)-3\right]\)

\(\ge\frac{1}{2}\left(2+2+2-3\right)=\frac{3}{2}\)(Cauchy)

Dấu''='' tự giải ra nhá

pham thi thu trang
13 tháng 8 2017 lúc 18:00

Bài 4 

dễ chứng minh \(\left(a+b\right)^2\ge4ab;\left(b+c\right)^2\ge4bc;\left(a+c\right)^2\ge4ac\)

\(\Rightarrow\left(a+b\right)^2\left(b+c\right)^2\left(a+c\right)^2\ge64a^2b^2c^2\)

rồi khai căn ra \(\Rightarrow\)dpcm. 

đấu " = " xảy ra \(\Leftrightarrow\)\(a=b=c\)

pham thi thu trang
13 tháng 8 2017 lúc 18:16

bài 1 \(\left(\frac{x}{y}\right)^2+\left(\frac{y}{z}\right)^2\ge2\times\frac{x}{y}\times\frac{y}{z}=2\frac{x}{z}\)

làm tương tự rồi cộng các vế các bất đẳng thức lại với nhau ta có dpcm ( cộng xong bạn đặt 2 ra ngoài ý, mk ngại viết nhiều hhehe) 

       

Công Chúa Tóc Dài
Xem chi tiết
Girl
11 tháng 3 2019 lúc 17:43

Ta có: \(\left(a-b\right)^2\ge0\) (đúng) 

\(\Rightarrow a^2-2ab+b^2\ge0\Rightarrow a^2+b^2\ge2ab\)

Ta có: \(\frac{a}{b}+\frac{b}{a}=\frac{a^2+b^2}{ab}\ge\frac{2ab}{ab}=2\)

"=" khi a=b. Nhưng a<b nên dấu bằng ko xảy ra,vậy ta có đpcm

Kiệt Nguyễn
12 tháng 3 2019 lúc 18:36

                         Giải

Không giảm tính tổng quát, giả sử \(a\ge b\) suy ra a = b + m \(\left(m\ge0\right)\)

Ta có: \(\frac{a}{b}+\frac{b}{a}=\frac{b+m}{b}+\frac{b}{b+m}\)

           \(=1+\frac{m}{b}+\frac{b}{b+m}\ge1+\frac{m}{b+m}+\frac{b}{b+m}=1+\frac{m+b}{b+m}\)

           \(=1+1=2\)

Vậy \(\frac{a}{b}+\frac{a}{b}\ge2\) (dấu = \(\Leftrightarrow\) m = 0\(\Leftrightarrow\) a = b)

Girl
12 tháng 3 2019 lúc 18:39

Dấu bằng khi nào bạn?

NGUYỄN THỊ NGỌC BÍCH
Xem chi tiết
Không Tên
14 tháng 2 2018 lúc 9:50

        \(\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow\)\(\frac{a}{c}=\frac{b}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

          \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)

\(\Rightarrow\)\(\frac{a+b}{b}=\frac{c+d}{d}\)

NGUYỄN THỊ NGỌC BÍCH
14 tháng 2 2018 lúc 9:52

cảm ơn bạn nhé

Trần Hiếu Anh
Xem chi tiết
Hoàng
Xem chi tiết
Duyên Lương
Xem chi tiết
Nguyễn Huy Tú
13 tháng 8 2017 lúc 15:16

Bài 3:
Áp dụng bất đẳng thức \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{9}{x+y+z}\) có:
\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{c+a}+\dfrac{a+b+c}{a+b}-3\)

\(=\left(a+b+c\right)\left(\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+b}\right)-3\)

\(\ge\left(a+b+c\right)\left(\dfrac{9}{2\left(a+b+c\right)}\right)-3\)

\(=\dfrac{9}{2}-3=1,5\)

Dấu " = " khi a = b = c

Bài 5:

Áp dụng bất đẳng thức AM - GM có:
\(a^2+b^2+c^2+d^2\ge2ab+2cd\ge4\sqrt{abcd}\)

Dấu " = " khi a = b = c = d = 1

Unruly Kid
13 tháng 8 2017 lúc 16:09

7) VP phải là abc nha

\(\left(b+c-a\right)\left(b+a-c\right)=b^2-\left(c-a\right)^2\le b^2\)

\(\left(c+a-b\right)\left(c+b-a\right)=c^2-\left(a-b\right)^2\le c^2\)

\(\left(a+b-c\right)\left(a+c-b\right)=a^2-\left(b-c\right)^2\le a^2\)

Nhân từng vế của 3 BĐT trên

\(\left[VT\right]^2\le VP^2\)

Các biểu thức trong ngoặc vuông đều dương nên khai phương ta được đpcm

Đẳng thức xảy ra khi và chỉ khi a=b=c

Unruly Kid
13 tháng 8 2017 lúc 16:11

2) Giả sử \(a\le0\):

Nếu a=0 thì trái với abc>0

Nếu a<0: Do a+b+c>0 nên b+c>0. Do abc>0 nên bc<0

Suy ra a(b+c)+bc<0, mâu thuẫn với ab+bc+ca>0

Vậy a>0

Tương tự ta có b>0;c>0