Cho dãy số 10, 102, 103, 104, ... 1020. Chứng minh rằng tồn tại 1 số chia cho 19 dư 1
Chứng minh rằng tồn tại 1 số tự nhiên chỉ được viết bởi chữ số 2 và chữ số 0 mà số đó chia hết cho 2015
cho dãy số 10,102,103,...,1020
CMR tồn tại 1 số chia 19 du 1
Bài 1: cho 12 số có 2 chữ số khác nhau. chứng minh rằng tồn tại 2 số có hiệu là số có 2 chữ số giống nhau
Bài 2: chứng minh rằng trong 27 số tự nhiên tùy ý luôn tồn tại 2 số có tổng hoặc hiệu chia hết cho 50.
AI LÀM CÓ CÁCH GIẢI MÌNH SẼ TICK.HỨA LUÔN
Câu hỏi nhóm VRCT số 1- lớp 7
Cho ba số nguyên tố lớn hơn 3. Chứng minh rằng trong ba số đó tồn tại hai số mà tổng hoặc hiệu của chúng chia hết cho 12.
Các số nguyên tố lớn hơn 3 khi chia cho 12 thì dư 11; 7; 5 hoặc 1; mà 5 + 7 = 1 + 11 = 12 chia hết cho 12 nên nếu chia 4 số dư này thành 2 nhóm là (5; 7) và (1; 11) thì với ba số bất kì đang có khi chia cho 12 sẽ có số dư thuộc 1 trong 2 nhóm trên. (nguyên lí Dirichlet)
k nếu đúng nhé!
Các số nguyên tố lớn hơn 3 khi chia cho 12 thì dư 11; 7; 5 hoặc 1; mà 5 + 7 = 1 + 11 = 12 chia hết cho 12 nên nếu chia 4 số dư này thành 2 nhóm là (5; 7) và (1; 11) thì với ba số bất kì đang có khi chia cho 12 sẽ có số dư thuộc 1 trong 2 nhóm trên. (nguyên lí Dirichlet)
1) Cho ba số tự nhiền a,b,c thỏa mãn \(a^2+b^2=20c+2\).Chứng minh rằng tồn tại số tự nhiên chỉ toàn chữ số 1 chia hết cho ab
a) 9x2 - 36
=(3x)2-62
=(3x-6)(3x+6)
=4(x-3)(x+3)
b) 2x3y-4x2y2+2xy3
=2xy(x2-2xy+y2)
=2xy(x-y)2
c) ab - b2-a+b
=ab-a-b2+b
=(ab-a)-(b2-b)
=a(b-1)-b(b-1)
=(b-1)(a-b)
P/s đùng để ý đến câu trả lời của mình
Bài 1: cho 12 số có 2 chữ số khác nhau. chứng minh rằng tồn tại 2 số có hiệu là số có 2 chữ số giống nhau
Bài 2: chứng minh rằng trong 27 số tự nhiên tùy ý luôn tồn tại 2 số có tổng hoặc hiệu chia hết cho 50.
AI LÀM CÓ CÁCH GIẢI MÌNH SẼ TICK.HỨA LUÔN
MÌNH CẦN GẤP, GẤP,GẤP,GẤP, GẤP,GẤP........................
Chia 50 chiếc kẹo cho 10 cháu. Chứng minh rằng chia cách nào cũng tồn tại hai cháu có số kẹo như nhau
Giúp mik vs nha mik lik lại
Mình ràng buộc thêm 1 điều kiện nữa thì đề này mới đúng được:
"Chia 50 kẹo cho 10 cháu, Cháu nào cũng có kẹo. Chứng minh rằng chia cách nào cũng tồn tại 2 cháu có số kẹo như nhau".
Vì rõ ràng nếu có cháu không có kẹo thì chia như các cháu có số kẹo là: 0;1;2;3;4;5;6;7;8;14 là không có cháu nào có số kẹo giống nhau.
Khi đó, bài toán được giải như sau:
Giả sử tồn tại một cách chia nào đó để không có cháu nào có số kẹo như nhau cách chia mà mỗi cháu có số kẹo là: 1;2;3;4;5;6;7;8;9;10 là có số lượng kẹo nhỏ nhất và bằng = 1/2*10*11=55 cái > 50 cái (đề bài) vô lý.
Vậy cách chia nào cũng tồn tại ít nhất 2 cháu có số kẹo bằng nhau.
cho 2005 số tự nhiên sao cho 4 số khác nhau bất kì trong chúng đều lập thành 1 tỉ lệ thức . chứng minh rằng trong các số đã cho luôn tồn tại ít nhất 502 số bằng nhau
Ta chứng minh trong 2005 số tự nhiên đã cho chỉ nhận nhiều nhất 4 giá trị khác nhau. Thực vậy, giả sử trong các số đã cho có nhiều hơn 4 số khác nhau, giả sử a1, a2, a3, a4, a5 là 5 số khác nhau.
Không mất tính tổng quát
Mình chỉ nói sơ thôi mong bạn hiểu cho mình
Chứng minh rằng tồn tại số tự nhiên k sao cho 2013k có bốn chữ số tận cùng là 0001