(1/2-1/3)(1/2-1/5)(1/2-1/7)....(1/1-1/99)
Tính nhanh:
A = 1/3 - 3/4 - ( - 3/5 ) + 1/72 - 2/9 - 1/36 + 1/15
B = 1/ 5 - 3/7 + 5/9 - 2/11 + 7/13 - 9/16 - 7/13 + 2/11 - 5/9 + 3/7 - 1/5
C = 1/100 - 1/100 . 99 - 1/99 . 98 - 1/98 . 97 - ... - 1/3 . 2 - 1/ 2 . 1
C=\(\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
=\(\frac{1}{100}-\left(\frac{1}{2.1}+\frac{1}{2.3}+...+\frac{1}{97.98}+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
=\(\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{97}-\frac{1}{98}+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
=\(\frac{1}{100}-\left(1-\frac{1}{100}\right)\)
=\(\frac{1}{100}-\frac{99}{100}\)
=\(\frac{-98}{100}=\frac{-49}{50}\)
C=1/100 -1/100.99 -1/99.98 -1/98.97-......- 1/3.2 -1/2.1
= 1/100 - (1/100.99 + 1/99.98 + 1/98.97-......+ 1/3.2 +1/2.1)
Đặt A = 1/100.99 + 1/99.98 + 1/98.97-......+ 1/3.2 +1/2.1 => C = 1/100 - A
Dễ thấy 1/2.1 = 1/1 - 1/2
1/3.2 = 1/2 - 1/3
.....................
1/99.98 = 1/98 - 1/99
1/100.99 = 1/99 - 1/100
=> cộng từng vế với vế ta
\(B=\left(\frac{3}{7}+\frac{-3}{7}\right)+\left(\frac{1}{5}-\frac{1}{5}\right)+\left(\frac{5}{9}+\frac{-5}{9}\right)+\left(\frac{2}{11}-\frac{2}{11}\right)\)
\(+\left(\frac{7}{13}-\frac{7}{13}\right)-\frac{9}{16}\)
\(=0+0+0+0-\frac{1}{16}\)
\(=\frac{-1}{16}\)
bài 1
A=1*2*3+2*3*4+3*4*5+...+99*100*101
B=1*3*5+3*5*7+...+95*97*99
C=2*4+4*6+..+98*100
D=1*2+3*4+5*6+...+99*100
E=1^2+2^2+3^2+...+100^2
G=1*3+2*4+3*5+4*6+...+99*101+100*102
H=1*2^2+2*3^2+3*4^2+...+99*100^2
I=1*2*3+3*4*5+5*6*7+7*8*9+...+98*99*100
K=1^2+3^2+5^2+...+99^2
A = 1*2*3 + 2*3*4 + 3*4*5 ... + 99*100*101
=> 4A = 1*2*3*4 + 2*3*4*4 + 3*4*5*4 + ... +99*100*101*4
=> 4A = 1*2*3*4 + 2*3*4*(5 - 1) + 3*4*5*( 6 - 2) + ... + 99*100*101*(102 - 98)
=> 4A = 1*2*3*4 + 2*3*4*5 - 1*2*3*4 + 3*4*5*6 - 2*3*4*5 + ... + 99*100*101*102 - 98*99*100*101
=> 4A = 99*100*101*102
=> 4A = 101989800
=> A = 25497450
S=1/1*2+1/2*3+1/3*4+...+1/99*100
S=1/1*3+1/3*5+1/5*7+....+1/99*101
a, S= 1/1*2 + 1/2*3 + 1/3*4 +...+1/99*100
S= 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +...+ 1/99 - 1/100
S= 1/1 - 1/100
S= 100/100 - 1/100
S= 99/100
b, S= 1/1*3 + 1/3*5 + 1/5*7 +...+1/99*101
S= 1/2* (2/1*3 + 2/3*5 + 2/5*7 +...+ 2/99*101)
S= 1/2* (1/1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 +...+ 1/99 - 1/101)
S= 1/2* (1/1 - 1/101)
S= 1/2* (101/101 - 1/101)
S= 1/2* 100/101
S= 50/101
Chúc bạn học tốt nha
TÍNH NHANH
1) S= 1/1*2+1/2*3+1/3*4+...+1/99*100
2) S= 3/1*3+3/3*5+2/5*7+...+2/97*99
3) S= 4/5*7+4/7*9+4/9*11+...+4/59*61
\(S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)
1)11-12+13-14+15-16+17-18+19-20+21-22+.........+99-100
2)2-4+6-8+......+1998-2000
3)-1+3-5+7-....+97-99
4)1+2-3-4+.........+97+98-99-100
5)1-2+3-4+.............+99-100
6)1+3-5-7+......+97-98-99+100
7)2100-299-298-..........22-2-1
8)1-4+7-10+........+307-310+313
câu 7: tính T=(1/2-1/3)(1/2-1/5)(1/2-1/7)....(1/2-1/99)
\(T=(\frac{1}{2}-\frac{1}{3})(\frac{1}{2}-\frac{1}{5})(\frac{1}{2}-\frac{1}{7}).....(\frac{1}{2}-\frac{1}{99})\)
\(\implies T=\frac{1}{2}(1-\frac{2}{3}).\frac{1}{2}(1-\frac{2}{5}).\frac{1}{2}(1-\frac{2}{7}).....\frac{1}{2}(1-\frac{2}{99})\)
Thấy T có: (99-3):2+1=49(SH)
\(\implies T=(\frac{1}{2}.49).[(1-\frac{2}{3}).(1-\frac{2}{5})...(1-\frac{2}{99})\)
\(\implies T=\frac{49}{2}.\frac{1}{99}=\frac{49}{198}\)
Tính:
A=( 1/2 - 1/3 ).( 1/2 - 1/5 ).( 1/2 - 1/7 )...( 1/2 - 1/99 )
Tính:
A=( 1/2 - 1/3 ).( 1/2 - 1/5 ).( 1/2 - 1/7 )...( 1/2 - 1/99 )
.·´¯`(>▂<)´¯`·.
A=(1/2-1/3)×(1/2-1/5)×(1/2-1/7)×...×(1/2-1/99)
\(A=\left(\dfrac{1}{2}-\dfrac{1}{3}\right).\left(\dfrac{1}{2}-\dfrac{1}{5}\right).\left(\dfrac{1}{2}-\dfrac{1}{7}\right)...\left(\dfrac{1}{2}-\dfrac{1}{99}\right)\)
\(=\dfrac{1}{2.3}.\dfrac{3}{2.5}.\dfrac{5}{2.7}...\dfrac{97}{2.99}=\dfrac{1.3.5.7...97}{2^{49}.3.5.7...99}\) (Có 49 thừa số)
\(=\dfrac{1}{2^{49}.99}\)