Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Diệp Ẩn
Xem chi tiết
Nguyễn Thị Phương Thảo
31 tháng 8 2017 lúc 15:37

ta xét tích: a.(b+1) = ab+a

                  b.(a+1) = ab+b

- Do a<b \(\Rightarrow\)ab+a<ab+b\(\Rightarrow\)a.(b+1)<b.(a+1)

Suy ra: \(\frac{a}{b}\)<\(\frac{a+1}{b+1}\)

Nguyễn Đạt
Xem chi tiết
Kẻ Huỷ Diệt
30 tháng 4 2017 lúc 21:25

\(\Leftrightarrow\frac{ab}{b\left(b+1\right)}+\frac{-a\left(b+1\right)}{b\left(b+1\right)}=\frac{-a}{b\left(b+1\right)}\)

\(\Rightarrow ab-a\left(b+1\right)=-a\)(khử mẫu)

\(\Leftrightarrow ab-ab-a=-a\)(đúng)

Vậy \(\frac{a}{b+1}+\frac{-a}{b}=\frac{-a}{b^2+b}\)

_Kik nha!! ^ ^

Nguyễn Đạt
30 tháng 4 2017 lúc 21:34

Hê! biết làm rồi!

Kẻ Huỷ Diệt
30 tháng 4 2017 lúc 21:36

Hì !! ^ ^

Trần Thanh Dung
Xem chi tiết
AhJin
Xem chi tiết
Lê Ngọc Khánh Linh
Xem chi tiết
Lysandra
Xem chi tiết
Đinh Đức Hùng
15 tháng 2 2017 lúc 14:25

\(\frac{B}{A}=\frac{\frac{2012}{1}+\frac{2011}{2}+\frac{2010}{3}+...+\frac{1}{2012}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}\)

\(=\frac{\left(\frac{2011}{2}+1\right)+\left(\frac{2010}{3}+1\right)+...+\left(\frac{1}{2012}+1\right)+1}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}\)

\(=\frac{\frac{2013}{2}+\frac{2013}{3}+\frac{2013}{4}+....+\frac{2013}{2012}+\frac{2013}{2013}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2013}}\)

\(=\frac{2013\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2013}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}=2013\)

êfe
Xem chi tiết
Tạ Tiểu Mi
Xem chi tiết
Đăng Khoa Trần
21 tháng 6 2017 lúc 4:23

\(\frac{a}{b}< \frac{a}{b+1}\)(2 phân số cùng tử số, mẫu số nào bé hơn thì phân số đó lớn hơn)

\(\frac{a}{b+1}< \frac{a+1}{b+1}\)(2 phân số cùng mẫu số, tử số nào lớn hơn thì phân số đó lớn hơn)

Từ đó suy ra \(\frac{a}{b}< \frac{a+1}{b+1}\)

Vũ Thị Hà Phương
Xem chi tiết